1
|
Hadipour M, Haseli S. Work extraction from quantum coherence in non-equilibrium environment. Sci Rep 2024; 14:24876. [PMID: 39438638 PMCID: PMC11496670 DOI: 10.1038/s41598-024-75478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Ergotropy, which represents the maximum amount of work that can be extracted from a quantum system, has become a focal point of interest in the fields of quantum thermodynamics and information processing. In practical scenarios, the interaction of quantum systems with their surrounding environment is unavoidable. Recent studies have increasingly focused on analyzing open quantum systems affected by non-stationary environmental fluctuations due to their significant impact on various physical scenarios. While much research has concentrated on work extraction from these systems, it often assumes that the environmental degrees of freedom are substantial and that the environment is effectively in equilibrium. This has led us to explore work extraction from quantum systems under non-stationary environmental conditions. In this work, the dynamics of ergotropy will be investigated in a non-equilibrium environment for both Markovian and non-Markovian regime. In this study, both the coherent and incoherent parts of the ergotropy will be considered. It will be shown that for a non-equilibrium environment, the extraction of work is more efficient compared to when the environment is in equilibrium.
Collapse
Affiliation(s)
- Maryam Hadipour
- Faculty of Physics, Urmia University of Technology, Urmia, Iran
| | - Soroush Haseli
- Faculty of Physics, Urmia University of Technology, Urmia, Iran.
| |
Collapse
|
2
|
Ivander F, Anto-Sztrikacs N, Segal D. Hyperacceleration of quantum thermalization dynamics by bypassing long-lived coherences: An analytical treatment. Phys Rev E 2023; 108:014130. [PMID: 37583187 DOI: 10.1103/physreve.108.014130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023]
Abstract
We develop a perturbative technique for solving Markovian quantum dissipative dynamics, with the perturbation parameter being a small gap in the eigenspectrum. As an example, we apply the technique and straightforwardly obtain analytically the dynamics of a three-level system with quasidegenerate excited states, where quantum coherences persist for very long times, proportional to the inverse of the energy splitting squared. We then show how to bypass this long-lived coherent dynamics and accelerate the relaxation to thermal equilibration in a hyper-exponential manner, a Markovian quantum-assisted Mpemba-like effect. This hyperacceleration of the equilibration process manifests if the initial state is carefully prepared, such that its coherences precisely store the amount of population relaxing from the initial condition to the equilibrium state. Our analytical method for solving quantum dissipative dynamics readily provides equilibration timescales, and as such it reveals how coherent and incoherent effects interlace in the dynamics. It further advises on how to accelerate relaxation processes, which is desirable when long-lived quantum coherences stagnate dynamics.
Collapse
Affiliation(s)
- Felix Ivander
- Chemical Physics Theory Group, Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Nicholas Anto-Sztrikacs
- Department of Physics, 60 Saint George Street, University of Toronto, Toronto, Ontario, Canada M5S 1A7
| | - Dvira Segal
- Chemical Physics Theory Group, Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
- Department of Physics, 60 Saint George Street, University of Toronto, Toronto, Ontario, Canada M5S 1A7
| |
Collapse
|
3
|
Gerry M, Segal D. Full counting statistics and coherences: Fluctuation symmetry in heat transport with the unified quantum master equation. Phys Rev E 2023; 107:054115. [PMID: 37329000 DOI: 10.1103/physreve.107.054115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/21/2023] [Indexed: 06/18/2023]
Abstract
Recently, a "unified" quantum master equation was derived and shown to be of the Gorini-Kossakowski-Lindblad-Sudarshan form. This equation describes the dynamics of open quantum systems in a manner that forgoes the full secular approximation and retains the impact of coherences between eigenstates close in energy. We implement full counting statistics with the unified quantum master equation to investigate the statistics of energy currents through open quantum systems with nearly degenerate levels. We show that, in general, this equation gives rise to dynamics that satisfy fluctuation symmetry, a sufficient condition for the Second Law of Thermodynamics at the level of average fluxes. For systems with nearly degenerate energy levels, such that coherences build up, the unified equation is simultaneously thermodynamically consistent and more accurate than the fully secular master equation. We exemplify our results for a "V" system facilitating energy transport between two thermal baths at different temperatures. We compare the statistics of steady-state heat currents through this system as predicted by the unified equation to those given by the Redfield equation, which is less approximate but, in general, not thermodynamically consistent. We also compare results to the secular equation, where coherences are entirely abandoned. We find that maintaining coherences between nearly degenerate levels is essential to properly capture the current and its cumulants. On the other hand, the relative fluctuations of the heat current, which embody the thermodynamic uncertainty relation, display inconsequential dependence on quantum coherences.
Collapse
Affiliation(s)
- Matthew Gerry
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
| | - Dvira Segal
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
- Chemical Physics Theory Group, Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
4
|
Joubert-Doriol L, Jung KA, Izmaylov AF, Brumer P. Quantum Kinetic Rates within the Nonequilibrium Steady State. J Chem Theory Comput 2023; 19:1130-1143. [PMID: 36728919 DOI: 10.1021/acs.jctc.2c00987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The nonequilibrium steady state (NESS) of a quantum network is central to a host of physical and biological scenarios. Examples include natural processes such as vision and photosynthesis as well as technical devices such as photocells, both activated by incoherent light (e.g., sunlight) and leading to quantum transport. Assessing time scales of the relevant chemical processes in the steady state is thus of utmost interest and is our goal in this paper. Here, a completely general approach to defining components of a quantum network in the NESS and obtaining rates of processes between these components is provided. Quantum effects are explicitly included throughout, both in (a) defining network components via projection operators and (b) determining the role of coherences in rate processes. As examples, the methodology is applied to model cases, two versions of the V-level system, and to the spin-boson model, wherein the roles of the environment and of internal system properties in determining the rates are examined. In addition, the role of Markovian vs non-Markovian contributions is quantified, exposing conditions under which NESS rates can be obtained by perturbing the nonequilibrium steady state.
Collapse
Affiliation(s)
- Loïc Joubert-Doriol
- Université Gustave Eiffel, Université Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France
| | - Kenneth A Jung
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Artur F Izmaylov
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
5
|
Koyanagi S, Tanimura Y. Numerically "exact" simulations of a quantum Carnot cycle: Analysis using thermodynamic work diagrams. J Chem Phys 2022; 157:084110. [DOI: 10.1063/5.0107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the efficiency of a quantum Carnot engine based on open quantum dynamics theory. The model includes time-dependent external fields for the subsystems controlling the isothermal and isentropic processes and for the system--bath (SB) interactions controlling the transition between these processes. Numerical simulations are conducted in a nonperturbative and non-Markovian SB coupling regime using the hierarchical equations of motion under these fields at different cycle frequencies. The work applied to the total system and the heat exchanged with the baths are rigorously evaluated. In addition, by regarding quasi-static work as free energy, we compute the quantum thermodynamic variables and analyze the simulation results using thermodynamic work diagrams for the first time. Analysis of these diagrams indicates that, in the strong SB coupling region, the fields for the SB interactions are major sources of work, while in other regions, the field for the subsystem is a source of work. We find that the maximum efficiency is achieved in the quasi-static case and is determined solely by the bath temperatures, regardless of the SB coupling strength, which is a numerical manifestation of Carnot's theorem.
Collapse
|
6
|
Koyanagi S, Tanimura Y. The laws of thermodynamics for quantum dissipative systems: A quasi-equilibrium Helmholtz energy approach. J Chem Phys 2022; 157:014104. [DOI: 10.1063/5.0093666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using the quasi-equilibrium Helmholtz energy (qHE), defined as the thermodynamic work in a quasi-static process, we investigate the thermal properties of both an isothermal process and a transition process between the adiabatic and isothermal states (adiabatic transition). Here, the work is defined by the change in energy from a steady state to another state under a time-dependent perturbation. In particular, the work for a quasi-static change is regarded as thermodynamic work. We employ a system--bath model that involves time-dependent perturbations in both the system and the system--bath interaction. We conduct numerical experiments for a three-stroke heat machine (a Kelvin-Planck cycle). For this purpose, we employ the hierarchical equations of motion (HEOM) approach. These experiments involve an adiabatic transition field that describes the operation of an adiabatic wall between the system and the bath. Thermodynamic--work diagrams for external fields and their conjugate variables, similar to the P-V diagram, are introduced to analyze the work done for the system in the cycle. We find that the thermodynamic efficiency of this machine is zero because the field for the isothermal processes acts as a refrigerator, whereas that for the adiabatic wall acts as a heat engine. This is a numerical manifestation of the Kelvin-Planck statement, which states that it is impossible to derive mechanical effects from a single heat source. These HEOM simulations serve as a rigorous test of thermodynamic formulations because the second law of thermodynamics is only valid when the work involved in the operation of adiabatic wall is treated accurately.
Collapse
|
7
|
Photonic heat transport in three terminal superconducting circuit. Nat Commun 2022; 13:1552. [PMID: 35322004 PMCID: PMC8943049 DOI: 10.1038/s41467-022-29078-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/23/2022] [Indexed: 11/09/2022] Open
Abstract
We report an experimental realization of a three-terminal photonic heat transport device based on a superconducting quantum circuit. The central element of the device is a flux qubit made of a superconducting loop containing three Josephson junctions, which can be tuned by magnetic flux. It is connected to three resonators terminated by resistors. By heating one of the resistors and monitoring the temperatures of the other two, we determine photonic heat currents in the system and demonstrate their tunability by magnetic field at the level of 1 aW. We determine system parameters by performing microwave transmission measurements on a separate nominally identical sample and, in this way, demonstrate clear correlation between the level splitting of the qubit and the heat currents flowing through it. Our experiment is an important step towards realization of heat transistors, heat amplifiers, masers pumped by heat and other quantum heat transport devices. Quantum heat transport devices are currently intensively studied. Here, the authors report the photonic heat transport modulated by superconducting qubit in a three-terminal device. Flux dependent heat power correlates with microwave measurements.
Collapse
|
8
|
Mohanta S, Saryal S, Agarwalla BK. Universal bounds on cooling power and cooling efficiency for autonomous absorption refrigerators. Phys Rev E 2022; 105:034127. [PMID: 35428079 DOI: 10.1103/physreve.105.034127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
For steady-state autonomous absorption refrigerators operating in the linear response regime, we show that there exists a hierarchy between the relative fluctuation of currents for cold, hot, and work terminals. Our proof requires the Onsager reciprocity relation along with the refrigeration condition that sets the direction of the mean currents for each terminal. As a consequence, the universal bounds on the mean cooling power, obtained following the thermodynamic uncertainty relations, follow a hierarchy. Interestingly, within this hierarchy, the tightest bound is given in terms of the work current fluctuation. Furthermore, the relative uncertainty hierarchy introduces a bound on cooling efficiency that is tighter than the bound obtained from the thermodynamic uncertainty relations. Interestingly, all of these bounds saturate in the tight-coupling limit. We test the validity of our results for two paradigmatic absorption refrigerator models: (i) a four-level working fluid and (ii) a two-level working fluid, operating in the weak (additive) and strong (multiplicative) system-bath interaction regimes, respectively.
Collapse
Affiliation(s)
- Sandipan Mohanta
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
9
|
Ivander F, Anto-Sztrikacs N, Segal D. Strong system-bath coupling effects in quantum absorption refrigerators. Phys Rev E 2022; 105:034112. [PMID: 35428056 DOI: 10.1103/physreve.105.034112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
We study the performance of three-level quantum absorption refrigerators, paradigmatic autonomous quantum thermal machines, and reveal central impacts of strong couplings between the working system and the thermal baths. Using the reaction coordinate quantum master equation method, which treats system-bath interactions beyond weak coupling, we demonstrate that in a broad range of parameters the cooling window at strong coupling can be captured by a weak-coupling theory, albeit with parameters renormalized by the system-bath coupling energy. As a result, at strong system-bath couplings the window of cooling is significantly reshaped compared to predictions of weak-coupling treatments. We further show that strong coupling admits direct transport pathways between the thermal reservoirs. Such beyond-second-order transport mechanisms are typically detrimental to the performance of quantum thermal machines. Our study reveals that it is inadequate to claim for either a suppression or an enhancement of the cooling performance as one increases system-bath coupling-when analyzed against a single parameter and in a limited domain. Rather, a comprehensive approach should be adopted so as to uncover the reshaping of the operational window.
Collapse
Affiliation(s)
- Felix Ivander
- Chemical Physics Theory Group, Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario, Canada M5S 3H6
| | - Nicholas Anto-Sztrikacs
- Department of Physics, 60 Saint George St., University of Toronto, Toronto, Ontario, Canada M5S 1A7
| | - Dvira Segal
- Chemical Physics Theory Group, Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario, Canada M5S 3H6
- Department of Physics, 60 Saint George St., University of Toronto, Toronto, Ontario, Canada M5S 1A7
| |
Collapse
|
10
|
Laser Cooling Beyond Rate Equations: Approaches from Quantum Thermodynamics. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Solids can be cooled by driving impurity ions with lasers, allowing them to transfer heat from the lattice phonons to the electromagnetic surroundings. This exemplifies a quantum thermal machine, which uses a quantum system as a working medium to transfer heat between reservoirs. We review the derivation of the Bloch-Redfield equation for a quantum system coupled to a reservoir, and its extension, using counting fields, to calculate heat currents. We use the full form of this equation, which makes only the weak-coupling and Markovian approximations, to calculate the cooling power for a simple model of laser cooling. We compare its predictions with two other time-local master equations: the secular approximation to the full Bloch-Redfield equation, and the Lindblad form expected for phonon transitions in the absence of driving. We conclude that the full Bloch-Redfield equation provides accurate results for the heat current in both the weak- and strong- driving regimes, whereas the other forms have more limited applicability. Our results support the use of Bloch-Redfield equations in quantum thermal machines, despite their potential to give unphysical results.
Collapse
|
11
|
Liu YQ, Yu DH, Yu CS. Common Environmental Effects on Quantum Thermal Transistor. ENTROPY (BASEL, SWITZERLAND) 2021; 24:32. [PMID: 35052057 PMCID: PMC8775262 DOI: 10.3390/e24010032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Quantum thermal transistor is a microscopic thermodynamical device that can modulate and amplify heat current through two terminals by the weak heat current at the third terminal. Here we study the common environmental effects on a quantum thermal transistor made up of three strong-coupling qubits. It is shown that the functions of the thermal transistor can be maintained and the amplification rate can be modestly enhanced by the skillfully designed common environments. In particular, the presence of a dark state in the case of the completely correlated transitions can provide an additional external channel to control the heat currents without any disturbance of the amplification rate. These results show that common environmental effects can offer new insights into improving the performance of quantum thermal devices.
Collapse
Affiliation(s)
- Yu-Qiang Liu
- School of Physics, Dalian University of Technology, Dalian 116024, China; (Y.-Q.L.); (D.-H.Y.)
| | - Deng-Hui Yu
- School of Physics, Dalian University of Technology, Dalian 116024, China; (Y.-Q.L.); (D.-H.Y.)
| | - Chang-Shui Yu
- School of Physics, Dalian University of Technology, Dalian 116024, China; (Y.-Q.L.); (D.-H.Y.)
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
12
|
Saryal S, Gerry M, Khait I, Segal D, Agarwalla BK. Universal Bounds on Fluctuations in Continuous Thermal Machines. PHYSICAL REVIEW LETTERS 2021; 127:190603. [PMID: 34797144 DOI: 10.1103/physrevlett.127.190603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/07/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
We study bounds on ratios of fluctuations in steady-state time-reversal energy conversion devices. In the linear response regime, we prove that the relative fluctuations (precision) of the output current (power) is always lower bounded by the relative fluctuations of the input current (heat current absorbed from the hot bath). As a consequence, the ratio between the fluctuations of the output and input currents are bounded both from above and below, where the lower (upper) bound is determined by the square of the averaged efficiency (square of the Carnot efficiency) of the engine. The saturation of the lower bound is achieved in the tight-coupling limit when the determinant of the Onsager response matrix vanishes. Our analysis can be applied to different operational regimes, including engines, refrigerators, and heat pumps. We illustrate our findings in two types of continuous engines: two-terminal coherent thermoelectric junctions and three-terminal quantum absorption refrigerators. Numerical simulations in the far-from-equilibrium regime suggest that these bounds apply more broadly, beyond linear response.
Collapse
Affiliation(s)
- Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Matthew Gerry
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
| | - Ilia Khait
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
| | - Dvira Segal
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
13
|
Yamamoto T, Kato T. Heat transport through a two-level system embedded between two harmonic resonators. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:395303. [PMID: 34237717 DOI: 10.1088/1361-648x/ac1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
We investigate heat transport through an assembly consisting of a two-level system coupled between two harmonic oscillators, which is described by the quantum Rabi model, as a prototype of nanoscale heat devices using controllable multi-level systems. Using the noninteracting-blip approximation, we find that the linear thermal conductance shows a characteristic temperature dependence with a two-peak structure. We also show that heat transport is sensitive to model parameters for weak system-bath coupling and strong hybridization between the two-level system and the harmonic oscillators. This property characteristic of the multi-level system is advantageous for applications such as a heat transistor, and can be examined in superconducting circuits.
Collapse
Affiliation(s)
- Tsuyoshi Yamamoto
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Takeo Kato
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
14
|
Liu J, Segal D. Coherences and the thermodynamic uncertainty relation: Insights from quantum absorption refrigerators. Phys Rev E 2021; 103:032138. [PMID: 33862758 DOI: 10.1103/physreve.103.032138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 11/07/2022]
Abstract
The thermodynamic uncertainty relation, originally derived for classical Markov-jump processes, provides a tradeoff relation between precision and dissipation, deepening our understanding of the performance of quantum thermal machines. Here, we examine the interplay of quantum system coherences and heat current fluctuations on the validity of the thermodynamics uncertainty relation in the quantum regime. To achieve the current statistics, we perform a full counting statistics simulation of the Redfield quantum master equation. We focus on steady-state quantum absorption refrigerators where nonzero coherence between eigenstates can either suppress or enhance the cooling power, compared with the incoherent limit. In either scenario, we find enhanced relative noise of the cooling power (standard deviation of the power over the mean) in the presence of system coherence, thereby corroborating the thermodynamic uncertainty relation. Our results indicate that fluctuations necessitate consideration when assessing the performance of quantum coherent thermal machines.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Dvira Segal
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Physics, 60 Saint George Street, University of Toronto, Toronto, Ontario, Canada M5S 1A7
| |
Collapse
|
15
|
Francica G, Binder FC, Guarnieri G, Mitchison MT, Goold J, Plastina F. Quantum Coherence and Ergotropy. PHYSICAL REVIEW LETTERS 2020; 125:180603. [PMID: 33196219 DOI: 10.1103/physrevlett.125.180603] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Constraints on work extraction are fundamental to our operational understanding of the thermodynamics of both classical and quantum systems. In the quantum setting, finite-time control operations typically generate coherence in the instantaneous energy eigenbasis of the dynamical system. Thermodynamic cycles can, in principle, be designed to extract work from this nonequilibrium resource. Here, we isolate and study the quantum coherent component to the work yield in such protocols. Specifically, we identify a coherent contribution to the ergotropy (the maximum amount of unitarily extractable work via cyclical variation of Hamiltonian parameters). We show this by dividing the optimal transformation into an incoherent operation and a coherence extraction cycle. We obtain bounds for both the coherent and incoherent parts of the extractable work and discuss their saturation in specific settings. Our results are illustrated with several examples, including finite-dimensional systems and bosonic Gaussian states that describe recent experiments on quantum heat engines with a quantized load.
Collapse
Affiliation(s)
- G Francica
- CNR-SPIN, I-84084 Fisciano (Salerno), Italy
| | - F C Binder
- Institute for Quantum Optics and Quantum Information-IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - G Guarnieri
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - M T Mitchison
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - J Goold
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - F Plastina
- Dipartimento di Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
- INFN-Gruppo Collegato di Cosenza
| |
Collapse
|
16
|
Singh V, Pandit T, Johal RS. Optimal performance of a three-level quantum refrigerator. Phys Rev E 2020; 101:062121. [PMID: 32688608 DOI: 10.1103/physreve.101.062121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/26/2020] [Indexed: 11/07/2022]
Abstract
We study the optimal performance of a three-level quantum refrigerator using two different objective functions: cooling power and χ function. For both cases, we obtain general expressions for the coefficient of performance (COP) and derive its well-known lower and upper bounds for the limiting cases when the ratio of system-bath coupling constants at the hot and cold contacts approaches infinity and zero, respectively. We also show that the cooling power can be maximized with respect to one control frequency, while χ function can be maximized globally with respect to two control frequencies. Additionally, we show that in the low-temperature regime, our model of refrigerator can be mapped to Feynman's ratchet and pawl model, a classical mesoscopic heat engine. In the parameter regime where both cooling power and χ function can be maximized, we compare the cooling power of the quantum refrigerator at maximum χ function with the maximum cooling power.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India.,Department of Physics, Koç University, Sarıyer, Istanbul, 34450, Turkey
| | - Tanmoy Pandit
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Ramandeep S Johal
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| |
Collapse
|
17
|
Zimbovskaya NA. Charge and heat current rectification by a double-dot system within the Coulomb blockade regime. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:325302. [PMID: 32217812 DOI: 10.1088/1361-648x/ab83e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/26/2020] [Indexed: 06/10/2023]
Abstract
Nanoscale rectifiers are known to have significant nanoelectronic and nanoheatronic applications. In the present work we theoretically analyze rectifying properties of a junction including a couple of quantum dots asymmetrically coupled to the electrodes. The charge and heat current rectification in the system is controlled by the dots occupation numbers and interdot Coulomb interactions. We examine the dependencies of the rectification ratio on the electron energy levels on the dots, on the intensity of electron-electron interactions, on the gate and bias voltages and on the thermal gradients applied across the system. It is shown that the considered double-dot system possesses significant potentialities as a common as well as a heat diode.
Collapse
Affiliation(s)
- Natalya A Zimbovskaya
- Department of Physics and Electronics, University of Puerto Rico-Humacao, CUH Station, Humacao, PR 00791, United States of America
| |
Collapse
|
18
|
Zimbovskaya NA, Nitzan A. Energy, Work, Entropy, and Heat Balance in Marcus Molecular Junctions. J Phys Chem B 2020; 124:2632-2642. [PMID: 32163712 DOI: 10.1021/acs.jpcb.0c00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a consistent theory of energy balance and conversion in a single-molecule junction with strong interactions between electrons on the molecular linker (dot) and phonons in the nuclear environment where the Marcus-type electron hopping processes predominate in the electron transport. It is shown that the environmental reorganization and relaxation that accompany electron hopping energy exchange between the electrodes and the nuclear (molecular and solvent) environment may bring a moderate local cooling of the latter in biased systems. The effect of a periodically driven dot level on the heat transport and power generated in the system is analyzed, and energy conservation is demonstrated both within and beyond the quasistatic regime. Finally, a simple model of atomic scale engine based on a Marcus single-molecule junction with a driven electron level is suggested and discussed.
Collapse
Affiliation(s)
- Natalya A Zimbovskaya
- Department of Physics and Electronics, University of Puerto Rico-Humacao, CUH Station, Humacao, Puerto Rico 00791, United States
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
19
|
Hewgill A, González JO, Palao JP, Alonso D, Ferraro A, De Chiara G. Three-qubit refrigerator with two-body interactions. Phys Rev E 2020; 101:012109. [PMID: 32069534 DOI: 10.1103/physreve.101.012109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 06/10/2023]
Abstract
We propose a three-qubit setup for the implementation of a variety of quantum thermal machines where all heat fluxes and work production can be controlled. An important configuration that can be designed is that of an absorption refrigerator, extracting heat from the coldest reservoir without the need of external work supply. Remarkably, we achieve this regime by using only two-body interactions instead of the widely employed three-body interactions. This configuration could be more easily realized in current experimental setups. We model the open-system dynamics with both a global and a local master equation thermodynamic-consistent approach. Finally, we show how this model can be employed as a heat valve, in which by varying the local field of one of the two qubits allows one to control and amplify the heat current between the other qubits.
Collapse
Affiliation(s)
- Adam Hewgill
- Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - J Onam González
- Dpto. de Física and IUdEA: Instituto Universitario de Estudios Avanzados, Universidad de La Laguna, 38203 Spain
| | - José P Palao
- Dpto. de Física and IUdEA: Instituto Universitario de Estudios Avanzados, Universidad de La Laguna, 38203 Spain
| | - Daniel Alonso
- Dpto. de Física and IUdEA: Instituto Universitario de Estudios Avanzados, Universidad de La Laguna, 38203 Spain
| | - Alessandro Ferraro
- Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Gabriele De Chiara
- Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
| |
Collapse
|
20
|
Proposal of a Computational Approach for Simulating Thermal Bosonic Fields in Phase Space. PHYSICS 2019. [DOI: 10.3390/physics1030029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When a quantum field is in contact with a thermal bath, the vacuum state of the field may be generalized to a thermal vacuum state, which takes into account the thermal noise. In thermo field dynamics, this is realized by doubling the dimensionality of the Fock space of the system. Interestingly, the representation of thermal noise by means of an augmented space is also found in a distinctly different approach based on the Wigner transform of both the field operators and density matrix, which we pursue here. Specifically, the thermal noise is introduced by augmenting the classical-like Wigner phase space by means of Nosé–Hoover chain thermostats, which can be readily simulated on a computer. In this paper, we illustrate how this may be achieved and discuss how non-equilibrium quantum thermal distributions of the field modes can be numerically simulated.
Collapse
|
21
|
Friedman HM, Segal D. Cooling condition for multilevel quantum absorption refrigerators. Phys Rev E 2019; 100:062112. [PMID: 31962400 DOI: 10.1103/physreve.100.062112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Models for quantum absorption refrigerators serve as test beds for exploring concepts and developing methods in quantum thermodynamics. Here we depart from the minimal, ideal design and consider a generic multilevel model for a quantum absorption refrigerator, which potentially suffers from lossy processes. Based on a full-counting statistics approach, we derive a formal cooling condition for the refrigerator, which can be feasibly evaluated analytically and numerically. We exemplify our approach on a three-level model for a quantum absorption refrigerator that suffers from different forms of nonideality (heat leakage, competition between different cooling pathways) and examine the cooling current with different designs. This study assists in identifying the cooling window of imperfect thermal machines.
Collapse
Affiliation(s)
- Hava Meira Friedman
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | - Dvira Segal
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
- Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7
| |
Collapse
|
22
|
Singh V, Johal RS. Three-level laser heat engine at optimal performance with ecological function. Phys Rev E 2019; 100:012138. [PMID: 31499856 DOI: 10.1103/physreve.100.012138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 11/07/2022]
Abstract
Although classical and quantum heat engines work on entirely different fundamental principles, there is an underlying similarity. For instance, the form of efficiency at optimal performance may be similar for both types of engines. In this work, we study a three-level laser quantum heat engine operating at maximum ecological function (EF) which represents a compromise between the power output and the loss of power due to entropy production. We present numerical as well as analytic results for the global and local optimization of our laser engine in different operational regimes. Particularly, we observe that in low-temperature regimes, the three-level laser heat engine can be mapped to Feynman's ratchet and pawl model, a steady-state classical heat engine. Then we derive analytic expressions for efficiency under the assumptions of strong matter-field coupling and high bath temperatures. Upper and lower bounds on the efficiency exist in case of extreme asymmetric dissipation when the ratio of system-bath coupling constants at the hot and the cold contacts respectively approaches zero or infinity. These bounds have been established previously for various classical models of Carnot-like engines. Further, for weak (or intermediate) matter-field coupling in the high-temperature limit, we derive some new bounds on the efficiency of the engine. We conclude that while the engine produces at least 75% of the power output as compared with the maximum power conditions, the fractional loss of power is appreciably low in case of the engine operating at maximum EF, thus making this objective function relevant from an environmental point of view.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Physical Sciences, and Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli P. O. 140306, Punjab, India
| | - Ramandeep S Johal
- Department of Physical Sciences, and Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli P. O. 140306, Punjab, India
| |
Collapse
|
23
|
Holubec V, Novotný T. Effects of noise-induced coherence on the fluctuations of current in quantum absorption refrigerators. J Chem Phys 2019; 151:044108. [DOI: 10.1063/1.5096275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Viktor Holubec
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| | - Tomáš Novotný
- Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, CZ-121 16 Praha, Czech Republic
| |
Collapse
|
24
|
González JO, Palao JP, Alonso D, Correa LA. Classical emulation of quantum-coherent thermal machines. Phys Rev E 2019; 99:062102. [PMID: 31330638 DOI: 10.1103/physreve.99.062102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Indexed: 06/10/2023]
Abstract
The performance enhancements observed in various models of continuous quantum thermal machines have been linked to the buildup of coherences in a preferred basis. But is this connection always an evidence of "quantum-thermodynamic supremacy"? By force of example, we show that this is not the case. In particular, we compare a power-driven three-level continuous quantum refrigerator with a four-level combined cycle, partly driven by power and partly by heat. We focus on the weak driving regime and find the four-level model to be superior since it can operate in parameter regimes in which the three-level model cannot and it may exhibit a larger cooling rate and, simultaneously, a better coefficient of performance. Furthermore, we find that the improvement in the cooling rate matches the increase in the stationary quantum coherences exactly. Crucially, though, we also show that the thermodynamic variables for both models follow from a classical representation based on graph theory. This implies that we can build incoherent stochastic-thermodynamic models with the same steady-state operation or, equivalently, that both coherent refrigerators can be emulated classically. More generally, we prove this for any N-level weakly driven device with a "cyclic" pattern of transitions. Therefore, even if coherence is present in a specific quantum thermal machine, it is often not essential to replicate the underlying energy conversion process.
Collapse
Affiliation(s)
- J Onam González
- Departamento de Física, Universidad de La Laguna, La Laguna 38204, Spain
- IUdEA, Universidad de La Laguna, La Laguna 38204, Spain
| | - José P Palao
- Departamento de Física, Universidad de La Laguna, La Laguna 38204, Spain
- IUdEA, Universidad de La Laguna, La Laguna 38204, Spain
| | - Daniel Alonso
- Departamento de Física, Universidad de La Laguna, La Laguna 38204, Spain
- IUdEA, Universidad de La Laguna, La Laguna 38204, Spain
| | - Luis A Correa
- School of Mathematical Sciences and CQNE, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Kavli Institute for Theoretical Physics University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|