1
|
Mijatovic G, Bara C, Pernice R, Loncar-Turukalo T, Nollo G, Faes L. Exploring the Short-Term Memory of Heart Rate Variability through Model-Free Information Measures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083690 DOI: 10.1109/embc40787.2023.10341158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In this work, we perform a comparative analysis of discrete- and continuous-time estimators of information-theoretic measures quantifying the concept of memory utilization in short-term heart rate variability (HRV). Specifically, considering heartbeat intervals in discrete time we compute the measure of information storage (IS) and decompose it into immediate memory utilization (IMU) and longer memory utilization (MU) terms; considering the timings of heartbeats in continuous time we compute the measure of MU rate (MUR). All measures are computed through model-free approaches based on nearest neighbor entropy estimators applied to the HRV series of a group of 15 healthy subjects measured at rest and during postural stress. We find, moving from rest to stress, statistically significant increases of the IS and the IMU, as well as of the MUR. Our results suggest that both discrete-time and continuous-time approaches can detect the higher predictive capacity of HRV occurring with postural stress, and that such increased memory utilization is due to fast mechanisms likely related to sympathetic activation.
Collapse
|
2
|
Sowinski DR, Carroll-Nellenback J, DeSilva J, Frank A, Ghoshal G, Gleiser M. The Consensus Problem in Polities of Agents with Dissimilar Cognitive Architectures. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1378. [PMID: 37420398 DOI: 10.3390/e24101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 07/09/2023]
Abstract
Agents interacting with their environments, machine or otherwise, arrive at decisions based on their incomplete access to data and their particular cognitive architecture, including data sampling frequency and memory storage limitations. In particular, the same data streams, sampled and stored differently, may cause agents to arrive at different conclusions and to take different actions. This phenomenon has a drastic impact on polities-populations of agents predicated on the sharing of information. We show that, even under ideal conditions, polities consisting of epistemic agents with heterogeneous cognitive architectures might not achieve consensus concerning what conclusions to draw from datastreams. Transfer entropy applied to a toy model of a polity is analyzed to showcase this effect when the dynamics of the environment is known. As an illustration where the dynamics is not known, we examine empirical data streams relevant to climate and show the consensus problem manifest.
Collapse
Affiliation(s)
| | | | - Jeremy DeSilva
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
| | - Adam Frank
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| | - Gourab Ghoshal
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| | - Marcelo Gleiser
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
3
|
Shorten DP, Priesemann V, Wibral M, Lizier JT. Early lock-in of structured and specialised information flows during neural development. eLife 2022; 11:74651. [PMID: 35286256 PMCID: PMC9064303 DOI: 10.7554/elife.74651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022] Open
Abstract
The brains of many organisms are capable of complicated distributed computation underpinned by a highly advanced information processing capacity. Although substantial progress has been made towards characterising the information flow component of this capacity in mature brains, there is a distinct lack of work characterising its emergence during neural development. This lack of progress has been largely driven by the lack of effective estimators of information processing operations for spiking data. Here, we leverage recent advances in this estimation task in order to quantify the changes in transfer entropy during development. We do so by studying the changes in the intrinsic dynamics of the spontaneous activity of developing dissociated neural cell cultures. We find that the quantity of information flowing across these networks undergoes a dramatic increase across development. Moreover, the spatial structure of these flows exhibits a tendency to lock-in at the point when they arise. We also characterise the flow of information during the crucial periods of population bursts. We find that, during these bursts, nodes tend to undertake specialised computational roles as either transmitters, mediators, or receivers of information, with these roles tending to align with their average spike ordering. Further, we find that these roles are regularly locked-in when the information flows are established. Finally, we compare these results to information flows in a model network developing according to a spike-timing-dependent plasticity learning rule. Similar temporal patterns in the development of information flows were observed in these networks, hinting at the broader generality of these phenomena.
Collapse
Affiliation(s)
- David P Shorten
- Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney, Australia
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Michael Wibral
- Campus Institute for Dynamics of Biological Networks, Georg August University, Göttingen, Germany
| | - Joseph T Lizier
- Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Mijatovic G, Antonacci Y, Loncar-Turukalo T, Minati L, Faes L. An Information-Theoretic Framework to Measure the Dynamic Interaction Between Neural Spike Trains. IEEE Trans Biomed Eng 2021; 68:3471-3481. [PMID: 33872139 DOI: 10.1109/tbme.2021.3073833] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE While understanding the interaction patterns among simultaneous recordings of spike trains from multiple neuronal units is a key topic in neuroscience, existing methods either do not consider the inherent point-process nature of spike trains or are based on parametric assumptions. This work presents an information-theoretic framework for the model-free, continuous-time estimation of both undirected (symmetric) and directed (Granger-causal) interactions between spike trains. METHODS The framework computes the mutual information rate (MIR) and the transfer entropy rate (TER) for two point processes X and Y, showing that the MIR between X and Y can be decomposed as the sum of the TER along the directions X → Y and Y → X. We present theoretical expressions and introduce strategies to estimate efficiently the two measures through nearest neighbor statistics. RESULTS Using simulations of independent and coupled point processes, we show the accuracy of MIR and TER to assess interactions even for weakly coupled and short realizations, and demonstrate the superiority of continuous-time estimation over the standard discrete-time approach. We also apply the MIR and TER to real-world data, specifically, recordings from in-vitro preparations of spontaneously-growing cultures of cortical neurons. Using this dataset, we demonstrate the ability of MIR and TER to describe how the functional networks between recording units emerge over the course of the maturation of the neuronal cultures. CONCLUSION AND SIGNIFICANCE the proposed framework provides principled measures to assess undirected and directed spike train interactions with more efficiency and flexibility than previous discrete-time or parametric approaches, opening new perspectives for the analysis of point-process data in neuroscience and many other fields.
Collapse
|
5
|
Mijatovic G, Pernice R, Perinelli A, Antonacci Y, Busacca A, Javorka M, Ricci L, Faes L. Measuring the Rate of Information Exchange in Point-Process Data With Application to Cardiovascular Variability. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:765332. [PMID: 36925567 PMCID: PMC10013020 DOI: 10.3389/fnetp.2021.765332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/26/2021] [Indexed: 02/01/2023]
Abstract
The amount of information exchanged per unit of time between two dynamic processes is an important concept for the analysis of complex systems. Theoretical formulations and data-efficient estimators have been recently introduced for this quantity, known as the mutual information rate (MIR), allowing its continuous-time computation for event-based data sets measured as realizations of coupled point processes. This work presents the implementation of MIR for point process applications in Network Physiology and cardiovascular variability, which typically feature short and noisy experimental time series. We assess the bias of MIR estimated for uncoupled point processes in the frame of surrogate data, and we compensate it by introducing a corrected MIR (cMIR) measure designed to return zero values when the two processes do not exchange information. The method is first tested extensively in synthetic point processes including a physiologically-based model of the heartbeat dynamics and the blood pressure propagation times, where we show the ability of cMIR to compensate the negative bias of MIR and return statistically significant values even for weakly coupled processes. The method is then assessed in real point-process data measured from healthy subjects during different physiological conditions, showing that cMIR between heartbeat and pressure propagation times increases significantly during postural stress, though not during mental stress. These results document that cMIR reflects physiological mechanisms of cardiovascular variability related to the joint neural autonomic modulation of heart rate and arterial compliance.
Collapse
Affiliation(s)
- Gorana Mijatovic
- Faculty of Technical Science, University of Novi Sad, Novi Sad, Serbia
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Alessio Perinelli
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Yuri Antonacci
- Department of Physics and Chemistry "Emilio Segrè," University of Palermo, Palermo, Italy
| | | | - Michal Javorka
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Leonardo Ricci
- Department of Physics, University of Trento, Trento, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Li M, Han Y, Aburn MJ, Breakspear M, Poldrack RA, Shine JM, Lizier JT. Transitions in information processing dynamics at the whole-brain network level are driven by alterations in neural gain. PLoS Comput Biol 2019; 15:e1006957. [PMID: 31613882 PMCID: PMC6793849 DOI: 10.1371/journal.pcbi.1006957] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
A key component of the flexibility and complexity of the brain is its ability to dynamically adapt its functional network structure between integrated and segregated brain states depending on the demands of different cognitive tasks. Integrated states are prevalent when performing tasks of high complexity, such as maintaining items in working memory, consistent with models of a global workspace architecture. Recent work has suggested that the balance between integration and segregation is under the control of ascending neuromodulatory systems, such as the noradrenergic system, via changes in neural gain (in terms of the amplification and non-linearity in stimulus-response transfer function of brain regions). In a previous large-scale nonlinear oscillator model of neuronal network dynamics, we showed that manipulating neural gain parameters led to a 'critical' transition in phase synchrony that was associated with a shift from segregated to integrated topology, thus confirming our original prediction. In this study, we advance these results by demonstrating that the gain-mediated phase transition is characterized by a shift in the underlying dynamics of neural information processing. Specifically, the dynamics of the subcritical (segregated) regime are dominated by information storage, whereas the supercritical (integrated) regime is associated with increased information transfer (measured via transfer entropy). Operating near to the critical regime with respect to modulating neural gain parameters would thus appear to provide computational advantages, offering flexibility in the information processing that can be performed with only subtle changes in gain control. Our results thus link studies of whole-brain network topology and the ascending arousal system with information processing dynamics, and suggest that the constraints imposed by the ascending arousal system constrain low-dimensional modes of information processing within the brain.
Collapse
Affiliation(s)
- Mike Li
- Centre for Complex Systems, The University of Sydney, Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney, Australia
| | - Yinuo Han
- Centre for Complex Systems, The University of Sydney, Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Matthew J. Aburn
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | | | - Russell A. Poldrack
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - James M. Shine
- Centre for Complex Systems, The University of Sydney, Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Joseph T. Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, Australia
- Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Wilson ADM, Burns ALJ, Crosato E, Lizier J, Prokopenko M, Schaerf TM, Ward AJW. Conformity in the collective: differences in hunger affect individual and group behavior in a shoaling fish. Behav Ecol 2019. [DOI: 10.1093/beheco/arz036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Animal groups are often composed of individuals that vary according to behavioral, morphological, and internal state parameters. Understanding the importance of such individual-level heterogeneity to the establishment and maintenance of coherent group responses is of fundamental interest in collective behavior. We examined the influence of hunger on the individual and collective behavior of groups of shoaling fish, x-ray tetras (Pristella maxillaris). Fish were assigned to one of two nutritional states, satiated or hungry, and then allocated to 5 treatments that represented different ratios of satiated to hungry individuals (8 hungry, 8 satiated, 4:4 hungry:satiated, 2:6 hungry:satiated, 6:2 hungry:satiated). Our data show that groups with a greater proportion of hungry fish swam faster and exhibited greater nearest neighbor distances. Within groups, however, there was no difference in the swimming speeds of hungry versus well-fed fish, suggesting that group members conform and adapt their swimming speed according to the overall composition of the group. We also found significant differences in mean group transfer entropy, suggesting stronger patterns of information flow in groups comprising all, or a majority of, hungry individuals. In contrast, we did not observe differences in polarization, a measure of group alignment, within groups across treatments. Taken together these results demonstrate that the nutritional state of animals within social groups impacts both individual and group behavior, and that members of heterogenous groups can adapt their behavior to facilitate coherent collective motion.
Collapse
Affiliation(s)
- Alexander D M Wilson
- School of Biological and Marine Sciences, University of Plymouth, Devon, UK
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Alicia L J Burns
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Emanuele Crosato
- School of Civil Engineering, University of Sydney, Sydney, NSW, Australia
| | - Joseph Lizier
- School of Civil Engineering, University of Sydney, Sydney, NSW, Australia
| | - Mikhail Prokopenko
- School of Civil Engineering, University of Sydney, Sydney, NSW, Australia
| | - Timothy M Schaerf
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Ashley J W Ward
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|