1
|
Go BG, Yi J, Kim YW. Random search for a partially reactive target by multiple diffusive searchers. Phys Rev E 2025; 111:014124. [PMID: 39972856 DOI: 10.1103/physreve.111.014124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/02/2024] [Indexed: 02/21/2025]
Abstract
We study the first-passage problem for a partially reactive target by N identical diffusive particles in a finite d-dimensional space, laying a focus on the effects of the partial reactivity when searchers are initially excluded from the target region. By solving the Fokker-Planck equation, we obtain the mean first-passage time that exhibits a power-law dependence on the number of searchers as τ_{N}∼N^{-α}, proving that the exponent α varies with dimensionality, reactivity, and the number of searchers, and specifying conditions in which crossovers between different exponents occur. We confirm the validity of our analytic results by performing Langevin dynamics simulations for various sets of system parameters.
Collapse
Affiliation(s)
- Byeong Guk Go
- Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon 34141, Korea
| | - Juyeon Yi
- Pusan National University, Department of Physics, Busan 46241, Korea
| | - Yong Woon Kim
- Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon 34141, Korea
| |
Collapse
|
2
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
3
|
Winogradoff D, Chou HY, Maffeo C, Aksimentiev A. Percolation transition prescribes protein size-specific barrier to passive transport through the nuclear pore complex. Nat Commun 2022; 13:5138. [PMID: 36050301 PMCID: PMC9437005 DOI: 10.1038/s41467-022-32857-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Nuclear pore complexes (NPCs) control biomolecular transport in and out of the nucleus. Disordered nucleoporins in the complex's pore form a permeation barrier, preventing unassisted transport of large biomolecules. Here, we combine coarse-grained simulations of experimentally derived NPC structures with a theoretical model to determine the microscopic mechanism of passive transport. Brute-force simulations of protein transport reveal telegraph-like behavior, where prolonged diffusion on one side of the NPC is interrupted by rapid crossings to the other. We rationalize this behavior using a theoretical model that reproduces the energetics and kinetics of permeation solely from statistics of transient voids within the disordered mesh. As the protein size increases, the mesh transforms from a soft to a hard barrier, enabling orders-of-magnitude reduction in permeation rate for proteins beyond the percolation size threshold. Our model enables exploration of alternative NPC architectures and sets the stage for uncovering molecular mechanisms of facilitated nuclear transport.
Collapse
Affiliation(s)
- David Winogradoff
- grid.35403.310000 0004 1936 9991Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ,grid.35403.310000 0004 1936 9991Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Han-Yi Chou
- grid.35403.310000 0004 1936 9991Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Christopher Maffeo
- grid.35403.310000 0004 1936 9991Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ,grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Davis LK, Šarić A, Hoogenboom BW, Zilman A. Physical modeling of multivalent interactions in the nuclear pore complex. Biophys J 2021; 120:1565-1577. [PMID: 33617830 PMCID: PMC8204217 DOI: 10.1016/j.bpj.2021.01.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
In the nuclear pore complex, intrinsically disordered proteins (FG Nups), along with their interactions with more globular proteins called nuclear transport receptors (NTRs), are vital to the selectivity of transport into and out of the cell nucleus. Although such interactions can be modeled at different levels of coarse graining, in vitro experimental data have been quantitatively described by minimal models that describe FG Nups as cohesive homogeneous polymers and NTRs as uniformly cohesive spheres, in which the heterogeneous effects have been smeared out. By definition, these minimal models do not account for the explicit heterogeneities in FG Nup sequences, essentially a string of cohesive and noncohesive polymer units, and at the NTR surface. Here, we develop computational and analytical models that do take into account such heterogeneity in a minimal fashion and compare them with experimental data on single-molecule interactions between FG Nups and NTRs. Overall, we find that the heterogeneous nature of FG Nups and NTRs does play a role in determining equilibrium binding properties but is of much greater significance when it comes to unbinding and binding kinetics. Using our models, we predict how binding equilibria and kinetics depend on the distribution of cohesive blocks in the FG Nup sequences and of the binding pockets at the NTR surface, with multivalency playing a key role. Finally, we observe that single-molecule binding kinetics has a rather minor influence on the diffusion of NTRs in polymer melts consisting of FG-Nup-like sequences.
Collapse
Affiliation(s)
- Luke K Davis
- Department of Physics and Astronomy; Institute for the Physics of Living Systems; London Centre for Nanotechnology, University College London, London, United Kingdom
| | - Anđela Šarić
- Department of Physics and Astronomy; Institute for the Physics of Living Systems
| | - Bart W Hoogenboom
- Department of Physics and Astronomy; Institute for the Physics of Living Systems; London Centre for Nanotechnology, University College London, London, United Kingdom.
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
A designer FG-Nup that reconstitutes the selective transport barrier of the nuclear pore complex. Nat Commun 2021; 12:2010. [PMID: 33790297 PMCID: PMC8012357 DOI: 10.1038/s41467-021-22293-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/01/2021] [Indexed: 02/01/2023] Open
Abstract
Nuclear Pore Complexes (NPCs) regulate bidirectional transport between the nucleus and the cytoplasm. Intrinsically disordered FG-Nups line the NPC lumen and form a selective barrier, where transport of most proteins is inhibited whereas specific transporter proteins freely pass. The mechanism underlying selective transport through the NPC is still debated. Here, we reconstitute the selective behaviour of the NPC bottom-up by introducing a rationally designed artificial FG-Nup that mimics natural Nups. Using QCM-D, we measure selective binding of the artificial FG-Nup brushes to the transport receptor Kap95 over cytosolic proteins such as BSA. Solid-state nanopores with the artificial FG-Nups lining their inner walls support fast translocation of Kap95 while blocking BSA, thus demonstrating selectivity. Coarse-grained molecular dynamics simulations highlight the formation of a selective meshwork with densities comparable to native NPCs. Our findings show that simple design rules can recapitulate the selective behaviour of native FG-Nups and demonstrate that no specific spacer sequence nor a spatial segregation of different FG-motif types are needed to create selective NPCs.
Collapse
|
6
|
Davis LK, Ford IJ, Šarić A, Hoogenboom BW. Intrinsically disordered nuclear pore proteins show ideal-polymer morphologies and dynamics. Phys Rev E 2020; 101:022420. [PMID: 32168597 DOI: 10.1103/physreve.101.022420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
In the nuclear pore complex, intrinsically disordered nuclear pore proteins (FG Nups) form a selective barrier for transport into and out of the cell nucleus, in a way that remains poorly understood. The collective FG Nup behavior has long been conceptualized either as a polymer brush, dominated by entropic and excluded-volume (repulsive) interactions, or as a hydrogel, dominated by cohesive (attractive) interactions between FG Nups. Here we compare mesoscale computational simulations with a wide range of experimental data to demonstrate that FG Nups are at the crossover point between these two regimes. Specifically, we find that repulsive and attractive interactions are balanced, resulting in morphologies and dynamics that are close to those of ideal polymer chains. We demonstrate that this property of FG Nups yields sufficient cohesion to seal the transport barrier, and yet maintains fast dynamics at the molecular scale, permitting the rapid polymer rearrangements needed for transport events.
Collapse
Affiliation(s)
- Luke K Davis
- London Centre for Nanotechnology, University College London, London WC1H OAH, United Kingdom
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Ian J Ford
- London Centre for Nanotechnology, University College London, London WC1H OAH, United Kingdom
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Anđela Šarić
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H OAH, United Kingdom
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Maguire L, Betterton MD, Hough LE. Bound-State Diffusion due to Binding to Flexible Polymers in a Selective Biofilter. Biophys J 2019; 118:376-385. [PMID: 31858976 DOI: 10.1016/j.bpj.2019.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 01/02/2023] Open
Abstract
Selective biofilters are used by cells to control the transport of proteins, nucleic acids, and other macromolecules. Biological filters demonstrate both high specificity and rapid motion or high flux of proteins. In contrast, high flux comes at the expense of selectivity in many synthetic filters. Binding can lead to selective transport in systems in which the bound particle can diffuse, but the mechanisms that lead to bound diffusion remain unclear. Previous theory has proposed a molecular mechanism of bound-state mobility based only on transient binding to flexible polymers. However, this mechanism has not been directly tested in experiments. We demonstrate that bound mobility via tethered diffusion can be engineered into a synthetic gel using protein fragments derived from the nuclear pore complex. The resulting bound-state diffusion is quantitatively consistent with theory. Our results suggest that synthetic biological filters can be designed to take advantage of tethered diffusion to give rapid, selective transport.
Collapse
Affiliation(s)
- Laura Maguire
- Department of Physics, University of Colorado Boulder, Boulder, Colorado; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, Colorado; Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Loren E Hough
- Department of Physics, University of Colorado Boulder, Boulder, Colorado; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
8
|
Maguire L, Stefferson M, Betterton MD, Hough LE. Design principles of selective transport through biopolymer barriers. Phys Rev E 2019; 100:042414. [PMID: 31770897 PMCID: PMC7502277 DOI: 10.1103/physreve.100.042414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 12/20/2022]
Abstract
In biological systems, polymeric materials block the movement of some macromolecules while allowing the selective passage of others. In some cases, binding enables selective transport, while in others the most inert particles appear to transit most rapidly. To study the general principles of filtering, we develop a model motivated by features of the nuclear pore complex (NPC) which are highly conserved and could potentially be applied to other biological systems. The NPC allows selective transport of proteins called transport factors, which transiently bind to disordered flexible proteins called phenylalanine-glycine-nucleoporins. While the NPC is tuned for transport factors and their cargo, we show that a single feature is sufficient for selective transport: the bound-state motion resulting from transient binding to flexible filaments. Interchain transfer without unbinding can further improve selectivity, especially for cross-linked chains. We generalize this observation to model nanoparticle transport through mucus and show that bound-state motion accelerates transport of transient nanoparticle application, even with clearance by mucus flow. Our model provides a framework to control binding-induced selective transport in biopolymeric materials.
Collapse
Affiliation(s)
- Laura Maguire
- Department of Physics, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
| | - Michael Stefferson
- Department of Physics, University of Colorado Boulder
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder
| | - Meredith D. Betterton
- Department of Physics, University of Colorado Boulder
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder
| | - Loren E. Hough
- Department of Physics, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
| |
Collapse
|