1
|
Simeone D, Tissot O, Luneville L. Diffusive first-order phase transition: nucleation, growth and coarsening in solids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2025; 88:056501. [PMID: 40215998 DOI: 10.1088/1361-6633/adcbbf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
The phenomena of nucleation and growth, which fall into the category of first-order phase transitions, are of great importance. They are present everywhere in our daily lives. They enable us to understand and model a vast number of phenomena, from the formation of raindrops, to the gelling of polymers, the evolution of a virus population and the formation of galaxies. Surprisingly, this whole range of phenomena can be described by two seemingly antagonistic approaches: classical nucleation theory, which highlights the atomistic approach of the diffusion process, and the phase-field (PF) approach, which erases the discrete nature of the diffusion process. Although there is an huge quantity of articles and review papers dealing with the problem of first-order phase transition, the subject is so important and vast that it is very difficult to provide nowadays exhaustive syntheses on the subject. The revival over the past 20 years in the condensed matter world of PF approaches such as PF crystal, or the recent development of optimization methods such as gentle ascend dynamics, as well as the emergence of atom probe tomography, have enabled us to better understand the links between these antagonistic approaches, and above all to provide new experimental results to test the limits of both. This renewal has motivated the writing of this review, both to take stock of current knowledge on these two approaches. This review has two distinct objectives: summarizing generic previous models applies to discuss the nucleation, the growth and the coarsening processes. Despite some reviews already exist on these different subject, few of them present the different logical links between these models and their limitations, unifying them within the framework of the theory of macroscopic fluctuations, which has been developed over the last 20 years. In particular, we present the extension of the Cahn-Hilliard formalism to model the nucleation and growth process and we discuss the relevance of the notion of pseudo-spinodal and discuss. Such an extension allows interpreting experiments performed fat from the solubility limit and the spinodal line. Finally, this work proposes some clues to make this unified approach more predictive.
Collapse
Affiliation(s)
- D Simeone
- Université Paris-Saclay, CEA,Service de Recherches en Matériaux et procédés Avancés, 91191 Gif-sur-Yvette, France
| | - O Tissot
- Université Paris-Saclay, CEA,Service de Recherches en Matériaux et procédés Avancés, 91191 Gif-sur-Yvette, France
| | - L Luneville
- Université Paris-Saclay, CEA,Service de Recherches en Matériaux et procédés Avancés, 91191 Gif-sur-Yvette, France
| |
Collapse
|
2
|
de Jager M, Vega C, Montero de Hijes P, Smallenburg F, Filion L. Statistical mechanics of crystal nuclei of hard spheres. J Chem Phys 2024; 161:184501. [PMID: 39513443 DOI: 10.1063/5.0226862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
In the study of crystal nucleation via computer simulations, hard spheres are arguably the most extensively explored model system. Nonetheless, even in this simple model system, the complex thermodynamics of crystal nuclei can sometimes give rise to counterintuitive results, such as the recent observation that the pressure inside a critical nucleus is lower than that of the surrounding fluid, seemingly clashing with the strictly positive Young-Laplace pressure we would expect in liquid droplets. Here, we re-derive many of the founding equations associated with crystal nucleation and use the hard-sphere model to demonstrate how they give rise to this negative pressure difference. We exploit the fact that, in the canonical ensemble, a nucleus can be in a (meta)stable equilibrium with the fluid and measure the surface stress for both flat and curved interfaces. Additionally, we explain the effect of defects on the chemical potential inside the crystal nucleus. Finally, we present a simple, fitted thermodynamic model to capture the properties of the nucleus, including the work required to form critical nuclei.
Collapse
Affiliation(s)
- Marjolein de Jager
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584CC Utrecht, The Netherlands
| | - Carlos Vega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pablo Montero de Hijes
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
- Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubuek-Platz 2, 1090 Vienna, Austria
| | - Frank Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Laura Filion
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584CC Utrecht, The Netherlands
| |
Collapse
|
3
|
Lutsko JF, Schoonen C. A microscopic approach to crystallization: Challenging the classical/non-classical dichotomy. J Chem Phys 2024; 161:104502. [PMID: 39254162 DOI: 10.1063/5.0225658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
We present a fundamental framework for the study of crystallization based on a combination of classical density functional theory and fluctuating hydrodynamics that is free of any assumptions regarding order parameters and that requires no input other than molecular interaction potentials. We use it to study the nucleation of both droplets and crystalline solids from a low-concentration solution of colloidal particles using two different interaction potentials. We find that the nucleation pathways of both droplets and crystals are remarkably similar at the early stages of nucleation until they diverge due to a rapid ordering along the solid pathways in line with the paradigm of "non-classical" crystallization. We compute the unstable modes at the critical clusters and find that despite the non-classical nature of solid nucleation, the size of the nucleating clusters remains the principle order parameter in all cases, supporting a "classical" description of the dynamics of crystallization. We show that nucleation rates can be extracted from our formalism in a systematic way. Our results suggest that in some cases, despite the non-classical nature of the nucleation pathways, classical nucleation theory can give reasonable results for solids but that there are circumstances where it may fail. This contributes a nuanced perspective to recent experimental and simulation work, suggesting that important aspects of crystal nucleation can be described within a classical framework.
Collapse
Affiliation(s)
- James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Blvd. du Triomphe, 1050 Brussels, Belgium
| | - Cédric Schoonen
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Blvd. du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Shchekin AK, Gosteva LA, Lebedeva TS, Tatyanenko DV. Confinement Effects in Droplet Formation on a Solid Particle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5174-5182. [PMID: 38415650 DOI: 10.1021/acs.langmuir.3c03342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Formation of a droplet around a spherical solid particle in supersaturated vapor is considered. The number and stability of equilibrium solutions in a closed small system are studied in the canonical ensemble in comparison to an open system in the grand canonical ensemble. Depending on the system's parameters, two modes exist in the canonical ensemble: the first one with only one solution and the second one with three solutions; the presence of the third solution is due to confinement. The analysis is conducted first on a macroscopic thermodynamic level of description, and then the results are supported by studies within two versions of classical density functional theory: the square-gradient approximation with the Carnahan-Starling equation of state for hard spheres on a completely wettable particle and the random-phase approximation with the fundamental measure theory on a poorly wettable particle. In the latter case, a solution breaking the spherical symmetry is observed at a small total number of molecules.
Collapse
Affiliation(s)
- Alexander K Shchekin
- Department of Statistical Physics, Saint Petersburg State University, Faculty of Physics, 7-9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Liubov A Gosteva
- Department of Statistical Physics, Saint Petersburg State University, Faculty of Physics, 7-9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Tatiana S Lebedeva
- Department of Statistical Physics, Saint Petersburg State University, Faculty of Physics, 7-9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Dmitry V Tatyanenko
- Department of Statistical Physics, Saint Petersburg State University, Faculty of Physics, 7-9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
5
|
Korede V, Veldhuis M, Penha FM, Nagalingam N, Cui P, Van der Heijden AE, Kramer HJ, Eral HB. Effect of Laser-Exposed Volume and Irradiation Position on Nonphotochemical Laser-Induced Nucleation of Potassium Chloride Solutions. CRYSTAL GROWTH & DESIGN 2023; 23:8163-8172. [PMID: 37937191 PMCID: PMC10626568 DOI: 10.1021/acs.cgd.3c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2023] [Indexed: 11/09/2023]
Abstract
Herein, we study the influences of the laser-exposed volume and the irradiation position on the nonphotochemical laser-induced nucleation (NPLIN) of supersaturated potassium chloride solutions in water. The effect of the exposed volume on the NPLIN probability was studied by exposing distinct milliliter-scale volumes of aqueous potassium chloride solutions stored in vials at two different supersaturations (1.034 and 1.050) and laser intensities (10 and 23 MW/cm2). Higher NPLIN probabilities were observed with increasing laser-exposed volume as well as with increasing supersaturation and laser intensity. The measured NPLIN probabilities at different exposed volumes are questioned in the context of the dielectric polarization mechanism and classical nucleation theory. No significant change in the NPLIN probability was observed when samples were irradiated at the bottom, top, or middle of the vial. However, a significant increase in the nucleation probability was observed upon irradiation through the solution meniscus. We discuss these results in terms of mechanisms proposed for NPLIN.
Collapse
Affiliation(s)
- Vikram Korede
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Mias Veldhuis
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Frederico Marques Penha
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, Teknikringen
42, 114 28 Stockholm, Sweden
| | - Nagaraj Nagalingam
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - PingPing Cui
- School
of Chemical Engineering and Technology, State Key Laboratory of Chemical
Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | | | - Herman J.M. Kramer
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Hüseyin Burak Eral
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
6
|
Korede V, Penha FM, de Munck V, Stam L, Dubbelman T, Nagalingam N, Gutta M, Cui P, Irimia D, van der Heijden AE, Kramer HJ, Eral HB. Design and Validation of a Droplet-based Microfluidic System To Study Non-Photochemical Laser-Induced Nucleation of Potassium Chloride Solutions. CRYSTAL GROWTH & DESIGN 2023; 23:6067-6080. [PMID: 37547880 PMCID: PMC10401630 DOI: 10.1021/acs.cgd.3c00591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Non-photochemical laser-induced nucleation (NPLIN) has emerged as a promising primary nucleation control technique offering spatiotemporal control over crystallization with potential for polymorph control. So far, NPLIN was mostly investigated in milliliter vials, through laborious manual counting of the crystallized vials by visual inspection. Microfluidics represents an alternative to acquiring automated and statistically reliable data. Thus we designed a droplet-based microfluidic platform capable of identifying the droplets with crystals emerging upon Nd:YAG laser irradiation using the deep learning method. In our experiments, we used supersaturated solutions of KCl in water, and the effect of laser intensity, wavelength (1064, 532, and 355 nm), solution supersaturation (S), solution filtration, and intentional doping with nanoparticles on the nucleation probability is quantified and compared to control cooling crystallization experiments. Ability of dielectric polarization and the nanoparticle heating mechanisms proposed for NPLIN to explain the acquired results is tested. Solutions with lower supersaturation (S = 1.05) exhibit significantly higher NPLIN probabilities than those in the control experiments for all laser wavelengths above a threshold intensity (50 MW/cm2). At higher supersaturation studied (S = 1.10), irradiation was already effective at lower laser intensities (10 MW/cm2). No significant wavelength effect was observed besides irradiation with 355 nm light at higher laser intensities (≥50 MW/cm2). Solution filtration and intentional doping experiments showed that nanoimpurities might play a significant role in explaining NPLIN phenomena.
Collapse
Affiliation(s)
- Vikram Korede
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Frederico Marques Penha
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, Teknikringen 42, 114-28 Stockholm, Sweden
| | - Vincent de Munck
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Lotte Stam
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Thomas Dubbelman
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Nagaraj Nagalingam
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Maheswari Gutta
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - PingPing Cui
- School
of Chemical Engineering and Technology, State Key Laboratory of Chemical
Engineering, Tianjin University, 300072 Tianjin, People’s Republic of China
| | - Daniel Irimia
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | | | - Herman J.M. Kramer
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Hüseyin Burak Eral
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
7
|
Ding F, Liu Y. A novel density functional study on the freezing mechanism of a nanodroplet under an external electric field. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Schoonen C, Lutsko JF. Crystal Polymorphism Induced by Surface Tension. PHYSICAL REVIEW LETTERS 2022; 129:246101. [PMID: 36563279 DOI: 10.1103/physrevlett.129.246101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
We use classical density functional theory (cDFT) to calculate fluid-solid surface tensions for fcc and bcc crystals formed by hard spheres and Lennard-Jones (LJ) particles. For hard spheres, our results show that the recently introduced "explicitly stable" functionals perform as well as the state of the art, and for both interaction potentials, our results compare well to simulation. We use the resulting bulk and interfacial energies for LJ to parametrize a capillary model for the free energy of small solid clusters and thereby determine the relative stability of bcc and fcc LJ clusters. We show a crossover from bcc to fcc stability as cluster size increases, thus providing insight into long-standing tension between simulation results and theoretical expectations. We also confirm that the bcc phase in contact with a vapor is unstable, thus extending earlier zero-temperature results. Our Letter demonstrates the potential of cDFT as an important tool in understanding crystallization and polymorphism.
Collapse
Affiliation(s)
- Cédric Schoonen
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
9
|
Schoonen C, Lutsko JF. Using classical density functional theory to determine crystal-fluid surface tensions. Phys Rev E 2022; 106:064110. [PMID: 36671108 DOI: 10.1103/physreve.106.064110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Classical density functional theory is used to determine the fluid-solid surface tensions for low-index faces of crystals of hard spheres and Lennard-Jones particles. The calculations make use of the recently introduced explicitly stable fundamental measure theory model for hard spheres, and we show that this gives state-of-the-art accuracy compared to simulation. For the Lennard-Jones system, results are presented for both solid-liquid and solid-vapor interfaces, and in both cases the FCC results compare favorably with existing results from the literature. We find that the BCC crystal has significantly lower solid-liquid surface tension than the FCC structure. For the solid-vapor interface, our results indicate that the BCC phase is unstable with respect to transition to the HCP structure, in agreement with various zero-temperature results in the literature.
Collapse
Affiliation(s)
- Cédric Schoonen
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Blvd. du Triomphe, 1050 Brussels, Belgium
| | - James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Blvd. du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
10
|
Zhou S. On Capacitance and Energy Storage of Supercapacitor with Dielectric Constant Discontinuity. NANOMATERIALS 2022; 12:nano12152534. [PMID: 35893502 PMCID: PMC9330726 DOI: 10.3390/nano12152534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022]
Abstract
The classical density functional theory (CDFT) is applied to investigate influences of electrode dielectric constant on specific differential capacitance Cd and specific energy storage E of a cylindrical electrode pore electrical double layer. Throughout all calculations the electrode dielectric constant varies from 5, corresponding to a dielectric electrode, to εwr= 108 corresponding to a metal electrode. Main findings are summarized as below. (i): By using a far smaller value of the solution relative dielectric constant εr=10, which matches with the reality of extremely narrow tube, one discloses that a rather high saturation voltage is needed to attain the saturation energy storage in the ultra-small pore. (ii): Use of a realistic low εr=10 value brings two obvious effects. First, influence of bulk electrolyte concentration on the Cd is rather small except when the electrode potential is around the zero charge potential; influence on the E curve is almost unobservable. Second, there remain the Cd and E enhancing effects caused by counter-ion valency rise, but strength of the effects reduces greatly with dropping of the εr value; in contrast, the Cd and E reducing effects coming from the counter-ion size enhancing remain significant enough for the low εr value. (iii) A large value of electrode relative dielectric constant εrw always reduces both the capacitance and energy storage; moreover, the effect of the εrw value gets eventually unobservable for small enough pore when the εrw value is beyond the scope corresponding to dielectric electrode. It is analyzed that the above effects take their rise in the repulsion and attraction on the counter-ions and co-ions caused by the electrode bound charges and a strengthened inter-counter-ion electrostatic repulsion originated in the low εr value.
Collapse
Affiliation(s)
- Shiqi Zhou
- School of Physics and Electronics, Central South University, Changsha 410083, China
| |
Collapse
|
11
|
Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions. ENTROPY 2021; 23:e23020234. [PMID: 33671461 PMCID: PMC7923074 DOI: 10.3390/e23020234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/15/2023]
Abstract
We prove that, within the class of pair potential Hamiltonians, the excess entropy is a universal, temperature-independent functional of the density and pair correlation function. This result extends Henderson’s theorem, which states that the free energy is a temperature dependent functional of the density and pair correlation. The stationarity and concavity of the excess entropy functional are discussed and related to the Gibbs–Bugoliubov inequality and to the free energy. We apply the Kirkwood approximation, which is commonly used for fluids, to both fluids and solids. Approximate excess entropy functionals are developed and compared to results from thermodynamic integration. The pair functional approach gives the absolute entropy and free energy based on simulation output at a single temperature without thermodynamic integration. We argue that a functional of the type, which is strictly applicable to pair potentials, is also suitable for first principles calculation of free energies from Born–Oppenheimer molecular dynamics performed at a single temperature. This advancement has the potential to reduce the evaluation the free energy to a simple modification to any procedure that evaluates the energy and the pair correlation function.
Collapse
|
12
|
Lutsko JF. Explicitly stable fundamental-measure-theory models for classical density functional theory. Phys Rev E 2021; 102:062137. [PMID: 33465965 DOI: 10.1103/physreve.102.062137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 11/07/2022]
Abstract
The derivation of the state of the art tensorial versions of Fundamental Measure Theory (a form of classical Density Functional Theory for hard spheres) is reexamined in the light of the recently introduced concept of global stability of the density functional based on its boundedness [Lutsko and Lam, Phys. Rev. E 98, 012604 (2018)2470-004510.1103/PhysRevE.98.012604]. It is shown that within the present paradigm, explicit stability of the functional can be achieved only at the cost of giving up accuracy at low densities. It is argued that this is an acceptable trade-off since the main value of DFT lies in the study of dense systems. Explicit calculations for a wide variety of systems show that a proposed explicitly stable functional is competitive in all ways with the popular White Bear models while sharing some of their weaknesses when applied to non-close-packed solids.
Collapse
Affiliation(s)
- James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Blvd. du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
13
|
Sanchez-Burgos I, de Hijes PM, Rosales-Pelaez P, Vega C, Sanz E. Equivalence between condensation and boiling in a Lennard-Jones fluid. Phys Rev E 2020; 102:062609. [PMID: 33466022 DOI: 10.1103/physreve.102.062609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Condensation and boiling are phase transitions highly relevant to industry, geology, and atmospheric science. These phase transitions are initiated by the nucleation of a drop in a supersaturated vapor and of a bubble in an overstretched liquid, respectively. The surface tension between both phases, liquid and vapor, is a key parameter in the development of such nucleation stage. Whereas the surface tension can be readily measured for a flat interface, there are technical and conceptual limitations to obtain it for the curved interface of the nucleus. On the technical side, it is quite difficult to observe a critical nucleus in experiments. From a conceptual point of view, the interfacial free energy depends on the choice of the dividing surface, being the surface of tension the one relevant for nucleation. We bypass the technical limitation by performing simulations of a Lennard-Jones fluid where we equilibrate critical nuclei (both drops and bubbles). Regarding the conceptual hurdle, we find the relevant cluster size by searching the radius that correctly predicts nucleation rates and nucleation free energy barriers when combined with Classical Nucleation Theory. With such definition of the cluster size we find the same value of the surface tension for drops and bubbles of a given radius. Thus, condensation and boiling can be viewed as two sides of the same coin. Finally, we combine the data coming from drops and bubbles to obtain, via two different routes, estimates of the Tolman length, a parameter that allows describing the curvature dependence of the surface tension in a theoretical framework.
Collapse
Affiliation(s)
- I Sanchez-Burgos
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - P Montero de Hijes
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - P Rosales-Pelaez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C Vega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E Sanz
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Lutsko JF, Schoonen C. Classical density-functional theory applied to the solid state. Phys Rev E 2020; 102:062136. [PMID: 33466033 DOI: 10.1103/physreve.102.062136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The standard model of classical density-functional theory (cDFT) for pair potentials consists of a hard-sphere functional plus a mean-field term accounting for long ranged attraction. However, most implementations using sophisticated fundamental measure hard-sphere functionals suffer from potential numerical instabilities either due to possible instabilities in the functionals themselves or due to implementations that mix real- and Fourier-space components inconsistently. Here we present a new implementation based on a demonstrably stable hard-sphere functional that is implemented in a completely consistent manner. The present work does not depend on approximate spherical integration schemes and so is much more robust than previous algorithms. The methods are illustrated by calculating phase diagrams for the solid state using the standard Lennard-Jones potential as well as a new class of potentials recently proposed by Wang et al. [Phys. Chem. Chem. Phys. 22, 10624 (2020)PPCPFQ1463-907610.1039/C9CP05445F]. The latter span the range from potentials for small molecules to those appropriate to colloidal systems simply by varying a parameter. We verify that cDFT is able to semiquantitatively reproduce the phase diagram in all cases. We also show that for these problems computationally cheap Gaussian approximations are nearly as good as full minimization based on finite differences.
Collapse
Affiliation(s)
- James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Cédric Schoonen
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
15
|
Zhou S. Effective electrostatic forces between two neutral surfaces with atomic scale strip shape surface charge separation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Bernet T, Müller EA, Jackson G. A tensorial fundamental measure density functional theory for the description of adsorption in substrates of arbitrary three-dimensional geometry. J Chem Phys 2020. [DOI: 10.1063/5.0010974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas Bernet
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, Total, LFCR, Anglet, France
| | - Erich A. Müller
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - George Jackson
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
17
|
Liu Y, Guo F, Hu J, Liu H, Hu Y. Time-dependent density functional theory for the freezing/melting transition in interfacial systems. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Hermann S, Krinninger P, de Las Heras D, Schmidt M. Phase coexistence of active Brownian particles. Phys Rev E 2019; 100:052604. [PMID: 31869869 DOI: 10.1103/physreve.100.052604] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Indexed: 06/10/2023]
Abstract
We investigate motility-induced phase separation of active Brownian particles, which are modeled as purely repulsive spheres that move due to a constant swim force with freely diffusing orientation. We develop on the basis of power functional concepts an analytical theory for nonequilibrium phase coexistence and interfacial structure. Theoretical predictions are validated against Brownian dynamics computer simulations. We show that the internal one-body force field has four nonequilibrium contributions: (i) isotropic drag and (ii) interfacial drag forces against the forward motion, (iii) a superadiabatic spherical pressure gradient, and (iv) the quiet life gradient force. The intrinsic spherical pressure is balanced by the swim pressure, which arises from the polarization of the free interface. The quiet life force opposes the adiabatic force, which is due to the inhomogeneous density distribution. The balance of quiet life and adiabatic forces determines bulk coexistence via equality of two bulk state functions, which are independent of interfacial contributions. The internal force fields are kinematic functionals which depend on density and current but are independent of external and swim forces, consistent with power functional theory. The phase transition originates from nonequilibrium repulsion, with the agile gas being more repulsive than the quiet liquid.
Collapse
Affiliation(s)
- Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Philip Krinninger
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
19
|
Lutsko JF. How crystals form: A theory of nucleation pathways. SCIENCE ADVANCES 2019; 5:eaav7399. [PMID: 30972366 PMCID: PMC6450691 DOI: 10.1126/sciadv.aav7399] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/12/2019] [Indexed: 05/09/2023]
Abstract
Recent advances in classical density functional theory are combined with stochastic process theory and rare event techniques to formulate a theoretical description of nucleation, including crystallization, that can predict nonclassical nucleation pathways based on no input other than the interaction potential of the particles making up the system. The theory is formulated directly in terms of the density field, thus forgoing the need to define collective variables. It is illustrated by application to diffusion-limited nucleation of macromolecules in solution for both liquid-liquid separation and crystallization. Both involve nonclassical pathways with crystallization, in particular, proceeding by a two-step mechanism consisting of the formation of a dense-solution droplet followed by ordering originating at the core of the droplet. Furthermore, during the ordering, the free-energy surface shows shallow minima associated with the freezing of liquid into solid shells, which may shed light on the widely observed metastability of nanoscale clusters.
Collapse
Affiliation(s)
- James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Blvd. du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
20
|
Lam J, Lutsko JF. Solvent-mediated interactions between nanostructures: From water to Lennard-Jones liquid. J Chem Phys 2018; 149:134703. [PMID: 30292194 DOI: 10.1063/1.5037571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Solvent-mediated interactions emerge from complex mechanisms that depend on the solute structure, its wetting properties, and the nature of the liquid. While numerous studies have focused on the first two influences, here, we compare the results from water and Lennard-Jones liquid in order to reveal to what extent solvent-mediated interactions are universal with respect to the nature of the liquid. Besides the influence of the liquid, the results were obtained with classical density functional theory and brute-force molecular dynamics simulations which allow us to contrast these two numerical techniques.
Collapse
Affiliation(s)
- Julien Lam
- Center for Nonlinear Phenomena and Complex Systems, Universite Libre de Bruxelles, Code Postal 231, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems, Universite Libre de Bruxelles, Code Postal 231, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|