1
|
Korchinski DJ, Rottler J. Thermally activated intermittent flow in amorphous solids. SOFT MATTER 2024; 20:7891-7913. [PMID: 39318269 DOI: 10.1039/d4sm00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Using mean field theory and a mesoscale elastoplastic model, we analyze the steady state shear rheology of thermally activated amorphous solids. At sufficiently high temperature and driving rates, flow is continuous and described by well-established rheological flow laws such as Herschel-Bulkley and logarithmic rate dependence. However, we find that these flow laws change in the regime of intermittent flow, where collective events no longer overlap and serrated flow becomes pronounced. In this regime, we identify a thermal activation stress scale, xa(T,), that wholly captures the effect of driving rate and temperature T on average flow stress, stress drop (avalanche) size and correlation lengths. Different rheological regimes are summarized in a dynamic phase diagram for the amorphous yielding transition. Theoretical predictions call for a need to re-examine the rheology of very slowly sheared amorphous matter much below the glass transition.
Collapse
Affiliation(s)
- Daniel James Korchinski
- Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Jörg Rottler
- Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
2
|
Parley JT, Sollich P. Ductile and brittle yielding of athermal amorphous solids: A mean-field paradigm beyond the random-field Ising model. Phys Rev E 2024; 110:045002. [PMID: 39562871 DOI: 10.1103/physreve.110.045002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/30/2024] [Indexed: 11/21/2024]
Abstract
Amorphous solids can yield in either a ductile or brittle manner under strain: plastic deformation can set in gradually, or abruptly through a macroscopic stress drop. Developing a unified theory describing both ductile and brittle yielding constitutes a fundamental challenge of nonequilibrium statistical physics. Recently, it has been proposed that, in the absence of thermal effects, the nature of the yielding transition is controlled by physics akin to that of the quasistatically driven random field Ising model (RFIM), which has served as the paradigm for understanding the effect of quenched disorder in slowly driven systems with short-ranged interactions. However, this theoretical picture neglects both the dynamics of, and the elasticity-induced long-ranged interactions between, the mesoscopic material constituents. Here, we address these two aspects and provide a unified theory building on the Hébraud-Lequeux elastoplastic description. The first aspect is crucial to understanding the competition between the imposed deformation rate and the finite timescale of plastic rearrangements: We provide a dynamical description of the macroscopic stress drop, as well as predictions for the shifting of the brittle yield strain and the scaling of the peak susceptibility with inverse shear rate. The second is essential to capture properly the behavior in the limit of quasistatic driving, where avalanches of plasticity diverge with system size at any value of the strain. We fully characterise the avalanche behavior, which is radically different to that of the RFIM. In the quasistatic, infinite-size limit, we find that both models have mean-field Landau exponents, obscuring the effect of the interactions. We show, however, that the latter profoundly affect the behavior of finite systems approaching the spinodal-like brittle yield point, where we recover qualitatively the finite-size trends found in particle simulations. The interactions also modify the nature of the random critical point separating ductile and brittle yielding, where we predict critical behavior on top of the marginality present at any value of the strain. We finally discuss how all our predictions can be directly tested against particle simulations and eventually experiments, and make first steps in this direction.
Collapse
|
3
|
Coquand O, Sperl M. Dynamical yield criterion for granular matter from first principles. Phys Rev E 2024; 109:034901. [PMID: 38632790 DOI: 10.1103/physreve.109.034901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/13/2024] [Indexed: 04/19/2024]
Abstract
We investigate, using a recently developed model of liquid state theory describing the rheology of dense granular flows, how a yield stress appears in granular matter at the yielding transition. Our model allows us to predict an analytical equation of the corresponding dynamical yield surface, which is compared to the usual models of solid fracture. In particular, this yield surface interpolates between the typical failure behaviors of soft and hard materials. This work also underlines the central role played by the effective friction coefficient at the yielding transition.
Collapse
Affiliation(s)
- O Coquand
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
- Laboratoire de Modélisation Pluridisciplinaire et Simulations, Université de Perpignan Via Domitia, 52 avenue Paul Alduy, F-66860 Perpignan, France
| | - M Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
- Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
| |
Collapse
|
4
|
Jagla EA. Quasistatic deformation of yield stress materials: Homogeneous or localized? Phys Rev E 2023; 108:034123. [PMID: 37849210 DOI: 10.1103/physreve.108.034123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
We analyze a mesoscopic model of a shear stress material with a three-dimensional slab geometry, under an external quasistatic deformation of a simple shear type. Relaxation is introduced in the model as a mechanism by which an unperturbed system achieves progressively mechanically more stable configurations. Although in all cases deformation occurs via localized plastic events (avalanches), we find qualitatively different behavior depending on the degree of relaxation in the model. For no or low relaxation, yielding is homogeneous in the sample, and even the largest avalanches become negligible in size compared with the system size (measured as the thickness of the slab L_{z}) when this is increased. On the contrary, for high relaxation, the deformation localizes in an almost two-dimensional region where all avalanches occur. Scaling analysis of the numerical results indicates that in this case, the linear size of the largest avalanches is comparable with L_{z}, even when this becomes very large. We correlate the two scenarios with a qualitative difference in the flow curve of the system in the two cases, which is monotonous in the first case and velocity weakening in the second case.
Collapse
Affiliation(s)
- E A Jagla
- Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, CNEA, CONICET, UNCUYO, Avenida E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
5
|
Richard D, Elgailani A, Vandembroucq D, Manning ML, Maloney CE. Mechanical excitation and marginal triggering during avalanches in sheared amorphous solids. Phys Rev E 2023; 107:034902. [PMID: 37072969 DOI: 10.1103/physreve.107.034902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 02/26/2023] [Indexed: 04/20/2023]
Abstract
We study plastic strain during individual avalanches in overdamped particle-scale molecular dynamics (MD) and mesoscale elastoplastic models (EPM) for amorphous solids sheared in the athermal quasistatic limit. We show that the spatial correlations in plastic activity exhibit a short length scale that grows as t^{3/4} in MD and ballistically in EPM, which is generated by mechanical excitation of nearby sites not necessarily close to their stability thresholds, and a longer lengthscale that grows diffusively for both models and is associated with remote marginally stable sites. These similarities in spatial correlations explain why simple EPMs accurately capture the size distribution of avalanches observed in MD, though the temporal profiles and dynamical critical exponents are quite different.
Collapse
Affiliation(s)
- D Richard
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
- Univiversité Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - A Elgailani
- Northeastern University, Boston, Massachusetts 02115, USA
| | - D Vandembroucq
- PMMH, CNRS UMR 7636, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - M L Manning
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
| | - C E Maloney
- Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Korchinski D, Rottler J. Dynamic phase diagram of plastically deformed amorphous solids at finite temperature. Phys Rev E 2022; 106:034103. [PMID: 36266895 DOI: 10.1103/physreve.106.034103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
The yielding transition that occurs in amorphous solids under athermal quasistatic deformation has been the subject of many theoretical and computational studies. Here, we extend this analysis to include thermal effects at finite shear rate, focusing on how temperature alters avalanches. We derive a nonequilibrium phase diagram capturing how temperature and strain rate effects compete, when avalanches overlap, and whether finite-size effects dominate over temperature effects. The predictions are tested through simulations of an elastoplastic model in two dimensions and in a mean-field approximation. We find a scaling for temperature-dependent softening in the low-strain rate regime when avalanches do not overlap, and a temperature-dependent Herschel-Bulkley exponent in the high-strain rate regime when avalanches do overlap.
Collapse
Affiliation(s)
- Daniel Korchinski
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| | - Jörg Rottler
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| |
Collapse
|
7
|
Jagla EA. Volume-shear coupling in a mesoscopic model of amorphous materials. Phys Rev E 2022; 106:014903. [PMID: 35974611 DOI: 10.1103/physreve.106.014903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
We present a two-dimensional mesoscopic model of a yield stress material that includes the possibility of local volume fluctuations coupled to shear in such a way that the shear strength of the material decreases as the local density decreases. The model reproduces a number of effects well known in the phenomenology of this kind of material. In particular, we find that the volume of the sample increases as the deformation rate increases; shear bands are no longer oriented at 45^{∘} with respect to the principal axis of the applied stress (as in the absence of volume-shear coupling); and homogeneous deformation becomes unstable at low enough deformation rates if volume-shear coupling is strong enough. We also discuss the effect of this coupling on some out-of-equilibrium configurations, which can be relevant to the study of the shear bands observed in metallic glasses.
Collapse
Affiliation(s)
- E A Jagla
- Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, CNEA, CONICET, UNCUYO, Av. E. Bustillo 9500 (R8402AGP) San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
8
|
Liu C, Ferrero EE, Jagla EA, Martens K, Rosso A, Talon L. The Fate of Shear-Oscillated Amorphous Solids. J Chem Phys 2022; 156:104902. [DOI: 10.1063/5.0079460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Chen Liu
- Columbia University Department of Chemistry, United States of America
| | | | - Eduardo A. Jagla
- Teoria de solidos, Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Argentina
| | | | | | | |
Collapse
|
9
|
Korchinski D, Ruscher C, Rottler J. Signatures of the spatial extent of plastic events in the yielding transition in amorphous solids. Phys Rev E 2021; 104:034603. [PMID: 34654138 DOI: 10.1103/physreve.104.034603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/06/2021] [Indexed: 11/07/2022]
Abstract
Amorphous solids are yield stress materials that flow when a sufficient load is applied. Their flow consists of periods of elastic loading interrupted by rapid stress drops, or avalanches, coming from microscopic rearrangements known as shear transformations (STs). Here we show that the spatial extent of avalanches in a steadily sheared amorphous solid has a profound effect on the distribution of local residual stresses that in turn determines the stress drop statistics. As reported earlier, the most unstable sites are located in a flat "plateau" region that decreases with system size. While the entrance into the plateau is set by the lower cutoff of the mechanical noise produced by individual STs, the departure from the usually assumed power-law (pseudogap) form of the residual stress distribution comes from far field effects related to spatially extended rearrangements. Interestingly, we observe that the average residual stress of the weakest sites is located in an intermediate power-law regime between the pseudogap and the plateau regimes, whose exponent decreases with system size. Our findings imply a new scaling relation linking the exponents characterizing the avalanche size and residual stress distributions.
Collapse
Affiliation(s)
- Daniel Korchinski
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| | - Céline Ruscher
- Institut Charles Sadron - CNRS - UPR22, 23 rue du Loess, F-67034 Strasbourg, France
| | - Jörg Rottler
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| |
Collapse
|
10
|
Khirallah K, Tyukodi B, Vandembroucq D, Maloney CE. Yielding in an Integer Automaton Model for Amorphous Solids under Cyclic Shear. PHYSICAL REVIEW LETTERS 2021; 126:218005. [PMID: 34114864 DOI: 10.1103/physrevlett.126.218005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
We present results on an automaton model of an amorphous solid under cyclic shear. After a transient, the steady state falls into one of three cases in order of increasing strain amplitude: (i) pure elastic behavior with no plastic activity, (ii) limit cycles where the state recurs after an integer period of strain cycles, and (iii) irreversible plasticity with longtime diffusion. The number of cycles N required for the system to reach a periodic orbit diverges as the amplitude approaches the yielding transition between regimes (ii) and (iii) from below, while the effective diffusivity D of the plastic strain field vanishes on approach from above. Both of these divergences can be described by a power law. We further show that the average period T of the limit cycles increases on approach to yielding.
Collapse
Affiliation(s)
| | - Botond Tyukodi
- Northeastern University, Boston, Massachusetts 02115, USA
- Department of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Damien Vandembroucq
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | | |
Collapse
|
11
|
Ferrero EE, Jagla EA. Properties of the density of shear transformations in driven amorphous solids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:124001. [PMID: 33393487 DOI: 10.1088/1361-648x/abd73a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The strain load Δγthat triggers consecutive avalanches is a key observable in the slow deformation of amorphous solids. Its temporally averaged value ⟨Δγ⟩ displays a non-trivial system-size dependence that constitutes one of the distinguishing features of the yielding transition. Details of this dependence are not yet fully understood. We address this problem by means of theoretical analysis and simulations of elastoplastic models for amorphous solids. An accurate determination of the size dependence of ⟨Δγ⟩ leads to a precise evaluation of the steady-state distribution of local distances to instabilityx. We find that the usually assumed formP(x) ∼xθ(withθbeing the so-called pseudo-gap exponent) is not accurate at lowxand that in generalP(x) tends to a system-size-dependentfinitelimit asx→ 0. We work out the consequences of this finite-size dependence standing on exact results for random-walks and disclosing an alternative interpretation of the mechanical noise felt by a reference site. We test our predictions in two- and three-dimensional elastoplastic models, showing the crucial influence of the saturation ofP(x) at smallxon the size dependence of ⟨Δγ⟩ and related scalings.
Collapse
Affiliation(s)
- Ezequiel E Ferrero
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Centro Atómico Bariloche, (R8402AGP) San Carlos de Bariloche, Río Negro, Argentina
| | - Eduardo A Jagla
- Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, CNEA, CONICET, UNCUYO, Av E Bustillo 9500 R8402AGP S C de Bariloche, Río Negro, Argentina
| |
Collapse
|
12
|
Ruscher C, Rottler J. Residual stress distributions in amorphous solids from atomistic simulations. SOFT MATTER 2020; 16:8940-8949. [PMID: 32901650 DOI: 10.1039/d0sm01155j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The distribution of local residual stresses (threshold to instability) that controls the statistical properties of plastic flow in athermal amorphous solids is examined with an atomistic simulation technique. For quiescent configurations, the distribution has a pseudogap (power-law) form with an exponent that agrees well with global yielding statistics. As soon as deformation sets in, the pseudogap region gives way to a system size dependent plateau at small residual stresses that can be understood from the statistics of local residual stress differences between plastic events. Results further suggest that the local yield stress in amorphous solids changes even if the given region does not participate in plastic activity.
Collapse
Affiliation(s)
- Céline Ruscher
- Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France. and Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | - Jörg Rottler
- Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
13
|
Jagla EA. Tensorial description of the plasticity of amorphous composites. Phys Rev E 2020; 101:043004. [PMID: 32422834 DOI: 10.1103/physreve.101.043004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/06/2020] [Indexed: 11/07/2022]
Abstract
We use a continuous mesoscopic model to address the yielding properties of plastic composites, formed by a host material and inclusions with different elastic and/or plastic properties. We investigate the flow properties of the composed material under a uniform externally applied deviatoric stress. We show that due to the heterogeneities induced by the inclusions, a scalar modeling in terms of a single deviatoric strain of the same symmetry as the externally applied deformation gives inaccurate results. A realistic modeling must include all possible shear deformations. Implementing this model in a two-dimensional system, we show that the effect of harder inclusions is very weak to relatively high concentrations. For softer inclusions instead, the effect is much stronger; even a small concentration of inclusions affecting the form of the flow curve and the critical stress. We also present the details of a full three-dimensional simulation scheme and obtain the corresponding results for harder and softer inclusions.
Collapse
Affiliation(s)
- E A Jagla
- Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, CNEA, CONICET, UNCUYO, and Av. E. Bustillo 9500 (R8402AGP) San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
14
|
Ferrero EE, Jagla EA. Criticality in elastoplastic models of amorphous solids with stress-dependent yielding rates. SOFT MATTER 2019; 15:9041-9055. [PMID: 31647078 DOI: 10.1039/c9sm01073d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We analyze the behavior of different elastoplastic models approaching the yielding transition. We propose two kinds of rules for the local yielding events: yielding occurs above the local threshold either at a constant rate or with a rate that increases as the square root of the stress excess. We establish a family of "static" universal critical exponents which do not depend on this dynamic detail of the model rules: in particular, the exponents for the avalanche size distribution P(S) ∼S-τSf(S/Ldf) and the exponents describing the density of sites at the verge of yielding, which we find to be of the form P(x) ≃P(0) + xθ with P(0) ∼L-a controlling the extremal statistics. On the other hand, we discuss "dynamical" exponents that are sensitive to the local yielding rule. We find that, apart form the dynamical exponent z controlling the duration of avalanches, also the flowcurve's (inverse) Herschel-Bulkley exponent β ([small gamma, Greek, dot above]∼ (σ-σc)β) enters in this category, and is seen to differ in ½ between the two yielding rate cases. We give analytical support to this numerical observation by calculating the exponent variation in the Hébraud-Lequeux model and finding an identical shift. We further discuss an alternative mean-field approximation to yielding only based on the so-called Hurst exponent of the accumulated mechanical noise signal, which gives good predictions for the exponents extracted from simulations of fully spatial models.
Collapse
Affiliation(s)
- E E Ferrero
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Centro Atómico Bariloche, (R8402AGP) San Carlos de Bariloche, Río Negro, Argentina.
| | - E A Jagla
- Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, CNEA, CONICET, UNCUYO, Av. E. Bustillo 9500 (R8402AGP), San Carlos de Bariloche Río Negro, Argentina
| |
Collapse
|
15
|
Ferrero EE, Jagla EA. Elastic Interfaces on Disordered Substrates: From Mean-Field Depinning to Yielding. PHYSICAL REVIEW LETTERS 2019; 123:218002. [PMID: 31809180 DOI: 10.1103/physrevlett.123.218002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 06/10/2023]
Abstract
We consider a model of an elastic manifold driven on a disordered energy landscape, with generalized long range elasticity. Varying the form of the elastic kernel by progressively allowing for the existence of zero modes, the model interpolates smoothly between mean-field depinning and finite dimensional yielding. We find that the critical exponents of the model change smoothly in this process. Also, we show that in all cases the Herschel-Buckley exponent of the flow curve depends on the analytical form of the microscopic pinning potential. Within the present elastoplastic description, all this suggests that yielding in finite dimensions is a mean-field transition.
Collapse
Affiliation(s)
- E E Ferrero
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Centro Atómico Bariloche, (R8402AGP) San Carlos de Bariloche, Río Negro, Argentina
| | - E A Jagla
- Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, CNEA, CONICET, UNCUYO, Av. E. Bustillo 9500 (R8402AGP) San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
16
|
Le Goff M, Bertin E, Martens K. Criticality at a Finite Strain Rate in Fluidized Soft Glassy Materials. PHYSICAL REVIEW LETTERS 2019; 123:108003. [PMID: 31573292 DOI: 10.1103/physrevlett.123.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 06/10/2023]
Abstract
We study the emergence of critical dynamics in the steady shear rheology of fluidized soft glassy materials. Within a mesoscale elastoplastic model accounting for a shear band instability, we show how additional noise can induce a transition from a phase separated to homogeneous flow, accompanied by critical-like fluctuations of the macroscopic shear rate. Both macroscopic quantities and fluctuations exhibit power law behaviors in the vicinity of this transition, consistent with previous experimental findings on vibrated granular media. Altogether, our results suggest a generic scenario for the emergence of criticality when shear weakening mechanisms compete with a fluidizing noise.
Collapse
Affiliation(s)
- Magali Le Goff
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
| | - Eric Bertin
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
| | - Kirsten Martens
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
| |
Collapse
|