1
|
Eliazar I. Power Levy motion. II. Evolution. CHAOS (WOODBURY, N.Y.) 2025; 35:033158. [PMID: 40131286 DOI: 10.1063/5.0251341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
This is the second part of a pair of papers that introduce and explore power Levy motion (PLM). The first part constructed PLM and explained its emergence and rationale. Taking on a "diffusion perspective," the first part addressed key facets and features of PLM. Taking on an "evolution perspective," this part continues the investigation of PLM and addresses its following facets and features: Markov dynamics and propagator; simulation; increments' conditional distributions; persistence and anti-persistence; power-law asymptotics and Taylor's law; integral representation; Langevin dynamics and stochastic differential equation; center-reversion and center-repulsion; decreasing and increasing volatility; Lamperti transformation and Ornstein-Uhlenbeck representation. This pair of papers establishes PLM as a potent and compelling anomalous-diffusion model and presents a comprehensive exposition of PLM.
Collapse
Affiliation(s)
- Iddo Eliazar
- School of Chemistry, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
2
|
Eliazar I. Levy Noise Affects Ornstein-Uhlenbeck Memory. ENTROPY (BASEL, SWITZERLAND) 2025; 27:157. [PMID: 40003154 PMCID: PMC11854396 DOI: 10.3390/e27020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
This paper investigates the memory of the Ornstein-Uhlenbeck process (OUP) via three ratios of the OUP increments: signal-to-noise, noise-to-noise, and tail-to-tail. Intuition suggests the following points: (1) changing the noise that drives the OUP from Gauss to Levy will not affect the memory, as both noises share the common 'independent increments' property; (2) changing the auto-correlation of the OUP from exponential to slowly decaying will affect the memory, as the change yields a process with long-range correlations; and (3) with regard to Levy driving noise, the greater the noise fluctuations, the noisier the prediction of the OUP increments. This paper shows that intuition is plain wrong. Indeed, a detailed analysis establishes that for each of the three above-mentioned points, the very converse holds. Hence, Levy noise has a significant and counter-intuitive effect on Ornstein-Uhlenbeck memory.
Collapse
Affiliation(s)
- Iddo Eliazar
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Li MG, Hu M, Fan LM, Bao JD, Li PC. Quantifying the energy landscape in weakly and strongly disordered frictional media. J Chem Phys 2024; 160:024903. [PMID: 38189619 DOI: 10.1063/5.0178092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
We investigate the "roughness" of the energy landscape of a system that diffuses in a heterogeneous medium with a random position-dependent friction coefficient α(x). This random friction acting on the system stems from spatial inhomogeneity in the surrounding medium and is modeled using the generalized Caldira-Leggett model. For a weakly disordered medium exhibiting a Gaussian random diffusivity D(x) = kBT/α(x) characterized by its average value ⟨D(x)⟩ and a pair-correlation function ⟨D(x1)D(x2)⟩, we find that the renormalized intrinsic diffusion coefficient is lower than the average one due to the fluctuations in diffusivity. The induced weak internal friction leads to increased roughness in the energy landscape. When applying this idea to diffusive motion in liquid water, the dissociation energy for a hydrogen bond gradually approaches experimental findings as fluctuation parameters increase. Conversely, for a strongly disordered medium (i.e., ultrafast-folding proteins), the energy landscape ranges from a few to a few kcal/mol, depending on the strength of the disorder. By fitting protein folding dynamics to the escape process from a metastable potential, the decreased escape rate conceptualizes the role of strong internal friction. Studying the energy landscape in complex systems is helpful because it has implications for the dynamics of biological, soft, and active matter systems.
Collapse
Affiliation(s)
- Ming-Gen Li
- Department of Physics, Shantou University, Shantou, Guangdong 515063, China
| | - Meng Hu
- Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
| | - Li-Ming Fan
- College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Jing-Dong Bao
- Department of Physics, Beijing Normal University, Beijing 100048, China
| | - Peng-Cheng Li
- Department of Physics, Shantou University, Shantou, Guangdong 515063, China
| |
Collapse
|
4
|
Goswami K, Metzler R. Trapped tracer in a non-equilibrium bath: dynamics and energetics. SOFT MATTER 2023; 19:8802-8819. [PMID: 37946588 DOI: 10.1039/d3sm01177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
We study the dynamics of a tracer that is elastically coupled to active particles being kept at two different temperatures, as a prototype of tracer dynamics in a non-equilibrium bath. Employing analytical techniques, we find the exact solution of the probability density function for the effective motion of the tracer. The analytical results are supported by numerical simulations. By combining the experimentally accessible quantities such as the response function and the power spectrum, we measure the non-equilibrium fluctuations in terms of the effective temperature. In addition, we compute the energy dissipation rate to find the precise effects of activity. Our study is relevant in understanding athermal fluctuations arising in cytoskeletal networks or inside a chromosome.
Collapse
Affiliation(s)
- Koushik Goswami
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea.
| |
Collapse
|
5
|
Grimes J, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien SL, Stepniewski TM, Medel-Lacruz B, Baidya M, Makarova M, Mistry R, Goulding J, Drube J, Hoffmann C, Owen DM, Shukla AK, Selent J, Hill SJ, Calebiro D. Plasma membrane preassociation drives β-arrestin coupling to receptors and activation. Cell 2023; 186:2238-2255.e20. [PMID: 37146613 PMCID: PMC7614532 DOI: 10.1016/j.cell.2023.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/16/2022] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
β-arrestin plays a key role in G protein-coupled receptor (GPCR) signaling and desensitization. Despite recent structural advances, the mechanisms that govern receptor-β-arrestin interactions at the plasma membrane of living cells remain elusive. Here, we combine single-molecule microscopy with molecular dynamics simulations to dissect the complex sequence of events involved in β-arrestin interactions with both receptors and the lipid bilayer. Unexpectedly, our results reveal that β-arrestin spontaneously inserts into the lipid bilayer and transiently interacts with receptors via lateral diffusion on the plasma membrane. Moreover, they indicate that, following receptor interaction, the plasma membrane stabilizes β-arrestin in a longer-lived, membrane-bound state, allowing it to diffuse to clathrin-coated pits separately from the activating receptor. These results expand our current understanding of β-arrestin function at the plasma membrane, revealing a critical role for β-arrestin preassociation with the lipid bilayer in facilitating its interactions with receptors and subsequent activation.
Collapse
Affiliation(s)
- Jak Grimes
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Shannon L O'Brien
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Tomasz M Stepniewski
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | - Brian Medel-Lacruz
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | - Mithu Baidya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Maria Makarova
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK; School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ravi Mistry
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Joëlle Goulding
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Julia Drube
- Institut für Molekulare Zellbiologie, Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität, Jena 07745, Germany
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität, Jena 07745, Germany
| | - Dylan M Owen
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK; Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Jana Selent
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | - Stephen J Hill
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
6
|
Defaveri L, Barkai E, Kessler DA. Brownian particles in periodic potentials: Coarse-graining versus fine structure. Phys Rev E 2023; 107:024122. [PMID: 36932490 DOI: 10.1103/physreve.107.024122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
We study the motion of an overdamped particle connected to a thermal heat bath in the presence of an external periodic potential in one dimension. When we coarse-grain, i.e., bin the particle positions using bin sizes that are larger than the periodicity of the potential, the packet of spreading particles, all starting from a common origin, converges to a normal distribution centered at the origin with a mean-squared displacement that grows as 2D^{*}t, with an effective diffusion constant that is smaller than that of a freely diffusing particle. We examine the interplay between this coarse-grained description and the fine structure of the density, which is given by the Boltzmann-Gibbs (BG) factor e^{-V(x)/k_{B}T}, the latter being nonnormalizable. We explain this result and construct a theory of observables using the Fokker-Planck equation. These observables are classified as those that are related to the BG fine structure, like the energy or occupation times, while others, like the positional moments, for long times, converge to those of the large-scale description. Entropy falls into a special category as it has a coarse-grained and a fine structure description. The basic thermodynamic formula F=TS-E is extended to this far-from-equilibrium system. The ergodic properties are also studied using tools from infinite ergodic theory.
Collapse
Affiliation(s)
| | - Eli Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 52900, Israel
| | - David A Kessler
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
7
|
Vinod D, Cherstvy AG, Metzler R, Sokolov IM. Time-averaging and nonergodicity of reset geometric Brownian motion with drift. Phys Rev E 2022; 106:034137. [PMID: 36266856 DOI: 10.1103/physreve.106.034137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
How do near-bankruptcy events in the past affect the dynamics of stock-market prices in the future? Specifically, what are the long-time properties of a time-local exponential growth of stock-market prices under the influence of stochastically occurring economic crashes? Here, we derive the ensemble- and time-averaged properties of the respective "economic" or geometric Brownian motion (GBM) with a nonzero drift exposed to a Poissonian constant-rate price-restarting process of "resetting." We examine-based both on thorough analytical calculations and on findings from systematic stochastic computer simulations-the general situation of reset GBM with a nonzero [positive] drift and for all special cases emerging for varying parameters of drift, volatility, and reset rate in the model. We derive and summarize all short- and long-time dependencies for the mean-squared displacement (MSD), the variance, and the mean time-averaged MSD (TAMSD) of the process of Poisson-reset GBM under the conditions of both rare and frequent resetting. We consider three main regions of model parameters and categorize the crossovers between different functional behaviors of the statistical quantifiers of this process. The analytical relations are fully supported by the results of computer simulations. In particular, we obtain that Poisson-reset GBM is a nonergodic stochastic process, with generally MSD(Δ)≠TAMSD(Δ) and Variance(Δ)≠TAMSD(Δ) at short lag times Δ and for long trajectory lengths T. We investigate the behavior of the ergodicity-breaking parameter in each of the three regions of parameters and examine its dependence on the rate of reset at Δ/T≪1. Applications of these theoretical results to the analysis of prices of reset-containing options are pertinent.
Collapse
Affiliation(s)
- Deepak Vinod
- Institute for Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
- IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany
| |
Collapse
|
8
|
Vinod D, Cherstvy AG, Wang W, Metzler R, Sokolov IM. Nonergodicity of reset geometric Brownian motion. Phys Rev E 2022; 105:L012106. [PMID: 35193263 DOI: 10.1103/physreve.105.l012106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
We derive. the ensemble- and time-averaged mean-squared displacements (MSD, TAMSD) for Poisson-reset geometric Brownian motion (GBM), in agreement with simulations. We find MSD and TAMSD saturation for frequent resetting, quantify the spread of TAMSDs via the ergodicity-breaking parameter and compute distributions of prices. General MSD-TAMSD nonequivalence proves reset GBM nonergodic.
Collapse
Affiliation(s)
- Deepak Vinod
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Wei Wang
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- IRIS Adlershof, 12489 Berlin, Germany
| |
Collapse
|
9
|
Bai Y, He C, Chu P, Long J, Li X, Fu X. Spatial modulation of individual behaviors enables an ordered structure of diverse phenotypes during bacterial group migration. eLife 2021; 10:67316. [PMID: 34726151 PMCID: PMC8563000 DOI: 10.7554/elife.67316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Coordination of diverse individuals often requires sophisticated communications and high-order computational abilities. Microbial populations can exhibit diverse individualistic behaviors, and yet can engage in collective migratory patterns with a spatially sorted arrangement of phenotypes. However, it is unclear how such spatially sorted patterns emerge from diverse individuals without complex computational abilities. Here, by investigating the single-cell trajectories during group migration, we discovered that, despite the constant migrating speed of a group, the drift velocities of individual bacteria decrease from the back to the front. With a Langevin-type modeling framework, we showed that this decreasing profile of drift velocities implies the spatial modulation of individual run-and-tumble random motions, and enables the bacterial population to migrate as a pushed wave front. Theoretical analysis and stochastic simulations further predicted that the pushed wave front can help a diverse population to stay in a tight group, while diverse individuals perform the same type of mean reverting processes around centers orderly aligned by their chemotactic abilities. This mechanism about the emergence of orderly collective migration from diverse individuals is experimentally demonstrated by titration of bacterial chemoreceptor abundance. These results reveal a simple computational principle for emergent ordered behaviors from heterogeneous individuals. Organisms living in large groups often have to move together in order to navigate, forage for food, and increase their roaming range. Such groups are often made up of distinct individuals that must integrate their different behaviors in order to migrate in the same direction at a similar pace. For instance, for the bacteria Escherichia coli to travel as a condensed group, they must coordinate their response to a set of chemical signals called chemoattractants that tell them where to go. The chemoattractants surrounding the bacteria are unequally distributed so that there is more of them at the front than the back of the group. During migration, each bacterium moves towards this concentration gradient in a distinct way, spontaneously rotating its direction in a ‘run-and-tumble’ motion that guides it towards areas where there are high levels of these chemical signals. In addition to this variability, how well individual bacteria are able to swim up the gradient also differs within the population. Bacteria that are better at sensing the chemoattractant gradient are placed at the front of the group, while those that are worst are shifted towards the back. This spatial arrangement is thought to help the bacteria migrate together. But how E. coli organize themselves in to this pattern is unclear, especially as they cannot communicate directly with one another and display such diverse, randomized behaviors. To help answer this question, Bai, He et al. discovered a general principle that describes how single bacterial cells move within a group. The results showed that E. coli alter their run-and-tumble motion depending on where they reside within the population: individuals at the rear drift faster so they can catch up with the group, while those leading the group drift slower to draw themselves back. This ‘reversion behavior’ allows the migrating bacteria to travel at a constant speed around a mean position relative to the group. A cell’s drifting speed is determined by how well it moves towards the chemoattractant and its response to the concentration gradient. As a result, the mean position around which the bacterium accelerates or deaccelerates will vary depending on how sensitive it is to the chemoattractant gradient. The E. coli therefore spatially arrange themselves so that the more sensitive bacteria are located at the front of the group where the gradient is shallower; and cells that are less sensitive are located towards the back where the gradient is steeper. These findings suggest a general principle for how bacteria form ordered patterns whilst migrating as a collective group. This behavior could also apply to other populations of distinct individuals, such as ants following a trail or flocks of birds migrating in between seasons.
Collapse
Affiliation(s)
- Yang Bai
- CAS Key Laboratory for Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Caiyun He
- CAS Key Laboratory for Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pan Chu
- CAS Key Laboratory for Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junjiajia Long
- Yale University, Department of Physics, New Haven, United States
| | - Xuefei Li
- CAS Key Laboratory for Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiongfei Fu
- CAS Key Laboratory for Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Cherstvy AG, Wang W, Metzler R, Sokolov IM. Inertia triggers nonergodicity of fractional Brownian motion. Phys Rev E 2021; 104:024115. [PMID: 34525594 DOI: 10.1103/physreve.104.024115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 11/07/2022]
Abstract
How related are the ergodic properties of the over- and underdamped Langevin equations driven by fractional Gaussian noise? We here find that for massive particles performing fractional Brownian motion (FBM) inertial effects not only destroy the stylized fact of the equivalence of the ensemble-averaged mean-squared displacement (MSD) to the time-averaged MSD (TAMSD) of overdamped or massless FBM, but also dramatically alter the values of the ergodicity-breaking parameter (EB). Our theoretical results for the behavior of EB for underdamped or massive FBM for varying particle mass m, Hurst exponent H, and trace length T are in excellent agreement with the findings of stochastic computer simulations. The current results can be of interest for the experimental community employing various single-particle-tracking techniques and aiming at assessing the degree of nonergodicity for the recorded time series (studying, e.g., the behavior of EB versus lag time). To infer FBM as a realizable model of anomalous diffusion for a set single-particle-tracking data when massive particles are being tracked, the EBs from the data should be compared to EBs of massive (rather than massless) FBM.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.,Institute for Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
| | - Wei Wang
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany
| |
Collapse
|
11
|
Wang W, Cherstvy AG, Kantz H, Metzler R, Sokolov IM. Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes. Phys Rev E 2021; 104:024105. [PMID: 34525678 DOI: 10.1103/physreve.104.024105] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion (FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent diffusivity D(x)=D_{0}|x|^{γ} and their "combined" process of HDP-FBM. We find, inter alia, that the resetting dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under confinement. We show that certain characteristics of these reset processes are functionally similar despite a different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicity-breaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced resetting-induced nonergodicity with a maximum of EB at intermediate r and EB∼(1/r)-decay at large r. Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally testable prediction. We conclude by discussing some implications to experimental systems featuring resetting dynamics.
Collapse
Affiliation(s)
- Wei Wang
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Holger Kantz
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany
| |
Collapse
|
12
|
He Y, Kawai R. Time-squeezing and time-expanding transformations in harmonic force fields. CHAOS (WOODBURY, N.Y.) 2021; 31:093107. [PMID: 34598459 DOI: 10.1063/5.0054330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
A variety of real life phenomena exhibit complex time-inhomogeneous nonlinear diffusive motion in the presence of an external harmonic force. In capturing the characteristics of such dynamics, the class of Ornstein-Uhlenbeck processes, with its physical time appropriately modulated, has long been regarded as the most relevant model on the basis of its mean reversion property. In this paper, we contrast two similar, yet definitely different, time-changing mechanisms in harmonic force fields by systematically deriving and presenting a variety of key properties all at once, that is, whether or not and how those time-changing mechanisms affect the characteristics of mean-reverting diffusion through sample path properties, the marginal probability density function, the asymptotic degeneracy of increments, the stationary law, the second-order structure, and the ensemble- and time-averaged mean square displacements. Some of those properties turn out rather counter-intuitive due to, or irrespective of, possible degeneracy of time-changing mechanisms in the long run. In light of those illustrative comparisons, we examine whether such time-changing operations are worth the additional operational cost, relative to physically relevant characteristics induced, and deduce practical implications and precautions from modeling and inference perspectives, for instance, on the experimental setup involving those anomalous diffusion processes, such as the observation start time and stepsize when measuring mean square displacements, so as to preclude potentially misleading results and paradoxical interpretations.
Collapse
Affiliation(s)
- Yue He
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Reiichiro Kawai
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Goerlich R, Li M, Albert S, Manfredi G, Hervieux PA, Genet C. Noise and ergodic properties of Brownian motion in an optical tweezer: Looking at regime crossovers in an Ornstein-Uhlenbeck process. Phys Rev E 2021; 103:032132. [PMID: 33862817 DOI: 10.1103/physreve.103.032132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/15/2021] [Indexed: 11/07/2022]
Abstract
We characterize throughout the spectral range of an optical trap the nature of the noise that drives the Brownian motion of an overdamped trapped single microsphere and its ergodicity, comparing experimental, analytical, and simulated data. We carefully analyze noise and ergodic properties (i) using the Allan variance for characterizing the noise and (ii) exploiting a test of ergodicity tailored for experiments done over finite times. We derive these two estimators in the Ornstein-Uhlenbeck low-frequency trapped-diffusion regime and study analytically their evolution toward the high-frequency Wiener-like free-diffusion regime, in very good agreement with simulated and experimental results. This study is performed comprehensively from the free-diffusion to the trapped-diffusion regimes. It also carefully looks at the specific signatures of the estimators at the crossover between the two regimes. This analysis is important to conduct when exploiting optical traps in a metrology context.
Collapse
Affiliation(s)
- Rémi Goerlich
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, UMR 7006, F-67000 Strasbourg, France
| | - Minghao Li
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, UMR 7006, F-67000 Strasbourg, France
| | - Samuel Albert
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, UMR 7006, F-67000 Strasbourg, France
| | - Giovanni Manfredi
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Paul-Antoine Hervieux
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Cyriaque Genet
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, UMR 7006, F-67000 Strasbourg, France
| |
Collapse
|
14
|
Xu Y, Liu X, Li Y, Metzler R. Heterogeneous diffusion processes and nonergodicity with Gaussian colored noise in layered diffusivity landscapes. Phys Rev E 2021; 102:062106. [PMID: 33466052 DOI: 10.1103/physreve.102.062106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 10/22/2020] [Indexed: 01/03/2023]
Abstract
Heterogeneous diffusion processes (HDPs) with space-dependent diffusion coefficients D(x) are found in a number of real-world systems, such as for diffusion of macromolecules or submicron tracers in biological cells. Here, we examine HDPs in quenched-disorder systems with Gaussian colored noise (GCN) characterized by a diffusion coefficient with a power-law dependence on the particle position and with a spatially random scaling exponent. Typically, D(x) is considered to be centerd at the origin and the entire x axis is characterized by a single scaling exponent α. In this work we consider a spatially random scenario: in periodic intervals ("layers") in space D(x) is centerd to the midpoint of each interval. In each interval the scaling exponent α is randomly chosen from a Gaussian distribution. The effects of the variation of the scaling exponents, the periodicity of the domains ("layer thickness") of the diffusion coefficient in this stratified system, and the correlation time of the GCN are analyzed numerically in detail. We discuss the regimes of superdiffusion, subdiffusion, and normal diffusion realisable in this system. We observe and quantify the domains where nonergodic and non-Gaussian behaviors emerge in this system. Our results provide new insights into the understanding of weak ergodicity breaking for HDPs driven by colored noise, with potential applications in quenched layered systems, typical model systems for diffusion in biological cells and tissues, as well as for diffusion in geophysical systems.
Collapse
Affiliation(s)
- Yong Xu
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China.,MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuemei Liu
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yongge Li
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China.,Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
15
|
Wang W, Cherstvy AG, Liu X, Metzler R. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise. Phys Rev E 2020; 102:012146. [PMID: 32794926 DOI: 10.1103/physreve.102.012146] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
Heterogeneous diffusion processes (HDPs) feature a space-dependent diffusivity of the form D(x)=D_{0}|x|^{α}. Such processes yield anomalous diffusion and weak ergodicity breaking, the asymptotic disparity between ensemble and time averaged observables, such as the mean-squared displacement. Fractional Brownian motion (FBM) with its long-range correlated yet Gaussian increments gives rise to anomalous and ergodic diffusion. Here, we study a combined model of HDPs and FBM to describe the particle dynamics in complex systems with position-dependent diffusivity driven by fractional Gaussian noise. This type of motion is, inter alia, relevant for tracer-particle diffusion in biological cells or heterogeneous complex fluids. We show that the long-time scaling behavior predicted theoretically and by simulations for the ensemble- and time-averaged mean-squared displacements couple the scaling exponents α of HDPs and the Hurst exponent H of FBM in a characteristic way. Our analysis of the simulated data in terms of the rescaled variable y∼|x|^{1/(2/(2-α))}/t^{H} coupling particle position x and time t yields a simple, Gaussian probability density function (PDF), P_{HDP-FBM}(y)=e^{-y^{2}}/sqrt[π]. Its universal shape agrees well with theoretical predictions for both uni- and bimodal PDF distributions.
Collapse
Affiliation(s)
- Wei Wang
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China.,Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Xianbin Liu
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
16
|
Le Vot F, Yuste SB, Abad E. Standard and fractional Ornstein-Uhlenbeck process on a growing domain. Phys Rev E 2019; 100:012142. [PMID: 31499768 DOI: 10.1103/physreve.100.012142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 11/07/2022]
Abstract
We study normal diffusive and subdiffusive processes in a harmonic potential (Ornstein-Uhlenbeck process) on a uniformly growing or contracting domain. Our starting point is a recently derived fractional Fokker-Planck equation, which covers both the case of Brownian diffusion and the case of a subdiffusive continuous-time random walk (CTRW). We find a high sensitivity of the random walk properties to the details of the domain growth rate, which gives rise to a variety of regimes with extremely different behaviors. At the origin of this rich phenomenology is the fact that the walkers still move while they wait to jump, since they are dragged by the deterministic drift arising from the domain growth. Thus, the increasingly long waiting times associated with the aging of the subdiffusive CTRW imply that, in the time interval between two consecutive jumps, the walkers might travel over much longer distances than in the normal diffusive case. This gives rise to seemingly counterintuitive effects. For example, on a static domain, both Brownian diffusion and subdiffusive CTRWs yield a stationary particle distribution with finite width when a harmonic potential is at play, thus indicating a confinement of the diffusing particle. However, for a sufficiently fast growing or contracting domain, this qualitative behavior breaks down, and differences between the Brownian case and the subdiffusive case are found. In the case of Brownian particles, a sufficiently fast exponential domain growth is needed to break the confinement induced by the harmonic force; in contrast, for subdiffusive particles such a breakdown may already take place for a sufficiently fast power-law domain growth. Our analytic and numerical results for both types of diffusion are fully confirmed by random walk simulations.
Collapse
Affiliation(s)
- F Le Vot
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx) Universidad de Extremadura, E-06071 Badajoz, Spain
| | - S B Yuste
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx) Universidad de Extremadura, E-06071 Badajoz, Spain
| | - E Abad
- Departamento de Física Aplicada and Instituto de Computación Científica Avanzada (ICCAEx) Centro Universitario de Mérida Universidad de Extremadura, E-06800 Mérida, Spain
| |
Collapse
|
17
|
Postnikov EB. Density fluctuations and random walks in an overdamped and supercooled simple liquid. Phys Rev E 2019; 99:062117. [PMID: 31330632 DOI: 10.1103/physreve.99.062117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 11/07/2022]
Abstract
In this work, the short-time dynamics of simple liquid is explored both analytically and numerically with the focus on the interplay between the density fluctuations in a volume surrounding a chosen particle and its random walk motion. The particles interact via the Lennard-Jones potential with parameters corresponding to liquid argon. For large times, analytical calculations based on the fluctuation theory provides an explicit expression reproducing isothermal change of the self-diffusion coefficient in liquid argon corresponding to the experimental data. These results lead to the conclusion that such behavior is based on the reduced mobility of particles reflected in their density fluctuations that can be equivalently achieved in the cases of either low temperatures and pressures (supercooling) or moderate temperatures and high pressures (overdamping).
Collapse
Affiliation(s)
- E B Postnikov
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, 305000 Kursk, Russia
| |
Collapse
|
18
|
Thapa S, Lukat N, Selhuber-Unkel C, Cherstvy AG, Metzler R. Transient superdiffusion of polydisperse vacuoles in highly motile amoeboid cells. J Chem Phys 2019; 150:144901. [PMID: 30981236 DOI: 10.1063/1.5086269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Samudrajit Thapa
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Nils Lukat
- Institute of Materials Science, Christian-Albrechts-Universität zu Kiel, 24143 Kiel, Germany
| | | | - Andrey G. Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
19
|
Cherstvy AG, Thapa S, Wagner CE, Metzler R. Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in mucin hydrogels. SOFT MATTER 2019; 15:2526-2551. [PMID: 30734041 DOI: 10.1039/c8sm02096e] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Native mucus is polymer-based soft-matter material of paramount biological importance. How non-Gaussian and non-ergodic is the diffusive spreading of pathogens in mucus? We study the passive, thermally driven motion of micron-sized tracers in hydrogels of mucins, the main polymeric component of mucus. We report the results of the Bayesian analysis for ranking several diffusion models for a set of tracer trajectories [C. E. Wagner et al., Biomacromolecules, 2017, 18, 3654]. The models with "diffusing diffusivity", fractional and standard Brownian motion are used. The likelihood functions and evidences of each model are computed, ranking the significance of each model for individual traces. We find that viscoelastic anomalous diffusion is often most probable, followed by Brownian motion, while the model with a diffusing diffusion coefficient is only realised rarely. Our analysis also clarifies the distribution of time-averaged displacements, correlations of scaling exponents and diffusion coefficients, and the degree of non-Gaussianity of displacements at varying pH levels. Weak ergodicity breaking is also quantified. We conclude that-consistent with the original study-diffusion of tracers in the mucin gels is most non-Gaussian and non-ergodic at low pH that corresponds to the most heterogeneous networks. Using the Bayesian approach with the nested-sampling algorithm, together with the quantitative analysis of multiple statistical measures, we report new insights into possible physical mechanisms of diffusion in mucin gels.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
20
|
Uneyama T, Miyaguchi T, Akimoto T. Relaxation functions of the Ornstein-Uhlenbeck process with fluctuating diffusivity. Phys Rev E 2019; 99:032127. [PMID: 30999488 DOI: 10.1103/physreve.99.032127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 06/09/2023]
Abstract
We study the relaxation behavior of the Ornstein-Uhlenbeck (OU) process with time-dependent and fluctuating diffusivity. In this process, the dynamics of the position vector is modeled by the Langevin equation with a linear restoring force and a fluctuating diffusivity (FD). This process can be interpreted as a simple model of relaxational dynamics with internal degrees of freedom or in a heterogeneous environment. By utilizing the functional integral expression and the transfer matrix method, we show that the relaxation function can be expressed in terms of the eigenvalues and eigenfunctions of the transfer matrix for general FD processes. We apply our general theory to two simple FD processes where the FD is described by the Markovian two-state model or an OU-type process. We show analytic expressions of the relaxation functions in these models and their asymptotic forms. We also show that the relaxation behavior of the OU process with an FD is qualitatively different from those obtained from conventional models such as the generalized Langevin equation.
Collapse
Affiliation(s)
- Takashi Uneyama
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Tomoshige Miyaguchi
- Department of Mathematics, Naruto University of Education, Naruto, Tokushima 772-8502, Japan
| | - Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|