1
|
Dornheim T, Vorberger J, Moldabekov ZA, Böhme M. Analysing the dynamic structure of warm dense matter in the imaginary-time domain: theoretical models and simulations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220217. [PMID: 37393936 DOI: 10.1098/rsta.2022.0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/10/2023] [Indexed: 07/04/2023]
Abstract
Rigorous diagnostics of experiments with warm dense matter are notoriously difficult. A key method is X-ray Thomson scattering (XRTS), but the interpretation of XRTS measurements is usually based on theoretical models that entail various approximations. Recently, Dornheim et al. [Nat. Commun. 13, 7911 (2022)] introduced a new framework for temperature diagnostics of XRTS experiments that is based on imaginary-time correlation functions. On the one hand, switching from the frequency to the imaginary-time domain gives one direct access to a number of physical properties, which facilitates the extraction of the temperature of arbitrarily complex materials without relying on any models or approximations. On the other hand, the bulk of theoretical work in dynamic quantum many-body theory is devoted to the frequency domain, and, to the best of our knowledge, the manifestation of physics properties within the imaginary-time density-density correlation function (ITCF) remains poorly understood. In the present work, we aim to fill this gap by introducing a simple, semi-analytical model for the imaginary-time dependence of two-body correlations within the framework of imaginary-time path integrals. As a practical example, we compare our new model to extensive ab initio path integral Monte Carlo results for the ITCF of a uniform electron gas, and find excellent agreement over a broad range of wavenumbers, densities and temperatures. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Maximilian Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
2
|
Militzer B, González-Cataldo F, Zhang S, Driver KP, Soubiran F. First-principles equation of state database for warm dense matter computation. Phys Rev E 2021; 103:013203. [PMID: 33601631 DOI: 10.1103/physreve.103.013203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
We put together a first-principles equation of state (FPEOS) database for matter at extreme conditions by combining results from path integral Monte Carlo and density functional molecular dynamics simulations of the elements H, He, B, C, N, O, Ne, Na, Mg, Al, and Si as well as the compounds LiF, B_{4}C, BN, CH_{4}, CH_{2}, C_{2}H_{3}, CH, C_{2}H, MgO, and MgSiO_{3}. For all these materials, we provide the pressure and internal energy over a density-temperature range from ∼0.5 to 50 g cm^{-3} and from ∼10^{4} to 10^{9} K, which are based on ∼5000 different first-principles simulations. We compute isobars, adiabats, and shock Hugoniot curves in the regime of L- and K-shell ionization. Invoking the linear mixing approximation, we study the properties of mixtures at high density and temperature. We derive the Hugoniot curves for water and alumina as well as for carbon-oxygen, helium-neon, and CH-silicon mixtures. We predict the maximal shock compression ratios of H_{2}O, H_{2}O_{2}, Al_{2}O_{3}, CO, and CO_{2} to be 4.61, 4.64, 4.64, 4.89, and 4.83, respectively. Finally we use the FPEOS database to determine the points of maximum shock compression for all available binary mixtures. We identify mixtures that reach higher shock compression ratios than their end members. We discuss trends common to all mixtures in pressure-temperature and particle-shock velocity spaces. In the Supplemental Material, we provide all FPEOS tables as well as computer codes for interpolation, Hugoniot calculations, and plots of various thermodynamic functions.
Collapse
Affiliation(s)
- Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Department of Astronomy, University of California, Berkeley, California 94720, USA
| | - Felipe González-Cataldo
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Shuai Zhang
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Kevin P Driver
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - François Soubiran
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- CEA DAM-DIF, 91297 Arpajon, France
| |
Collapse
|
3
|
Militzer B, González-Cataldo F, Zhang S, Whitley HD, Swift DC, Millot M. Nonideal mixing effects in warm dense matter studied with first-principles computer simulations. J Chem Phys 2020; 153:184101. [DOI: 10.1063/5.0023232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Department of Astronomy, University of California, Berkeley, California 94720, USA
| | - Felipe González-Cataldo
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Shuai Zhang
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Heather D. Whitley
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Damian C. Swift
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Marius Millot
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
4
|
Zhang S, Marshall MC, Yang LH, Sterne PA, Militzer B, Däne M, Gaffney JA, Shamp A, Ogitsu T, Caspersen K, Lazicki AE, Erskine D, London RA, Celliers PM, Nilsen J, Whitley HD. Benchmarking boron carbide equation of state using computation and experiment. Phys Rev E 2020; 102:053203. [PMID: 33327061 DOI: 10.1103/physreve.102.053203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/08/2020] [Indexed: 11/07/2022]
Abstract
Boron carbide (B_{4}C) is of both fundamental scientific and practical interest due to its structural complexity and how it changes upon compression, as well as its many industrial uses and potential for use in inertial confinement fusion (ICF) and high-energy density physics experiments. We report the results of a comprehensive computational study of the equation of state (EOS) of B_{4}C in the liquid, warm dense matter, and plasma phases. Our calculations are cross-validated by comparisons with Hugoniot measurements up to 61 megabar from planar shock experiments performed at the National Ignition Facility (NIF). Our computational methods include path integral Monte Carlo, activity expansion, as well as all-electron Green's function Korringa-Kohn-Rostoker and molecular dynamics that are both based on density functional theory. We calculate the pressure-internal energy EOS of B_{4}C over a broad range of temperatures (∼6×10^{3}-5×10^{8} K) and densities (0.025-50 g/cm^{3}). We assess that the largest discrepancies between theoretical predictions are ≲5% near the compression maximum at 1-2×10^{6} K. This is the warm-dense state in which the K shell significantly ionizes and has posed grand challenges to theory and experiment. By comparing with different EOS models, we find a Purgatorio model (LEOS 2122) that agrees with our calculations. The maximum discrepancies in pressure between our first-principles predictions and LEOS 2122 are ∼18% and occur at temperatures between 6×10^{3}-2×10^{5} K, which we believe originate from differences in the ion thermal term and the cold curve that are modeled in LEOS 2122 in comparison with our first-principles calculations. To account for potential differences in the ion thermal term, we have developed three new equation-of-state models that are consistent with theoretical calculations and experiment. We apply these new models to 1D hydrodynamic simulations of a polar direct-drive NIF implosion, demonstrating that these new models are now available for future ICF design studies.
Collapse
Affiliation(s)
- Shuai Zhang
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA.,Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | | | - Lin H Yang
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Philip A Sterne
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA.,Department of Astronomy, University of California, Berkeley, California 94720, USA
| | - Markus Däne
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - James A Gaffney
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Andrew Shamp
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Tadashi Ogitsu
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Kyle Caspersen
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Amy E Lazicki
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - David Erskine
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Richard A London
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Peter M Celliers
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Joseph Nilsen
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Heather D Whitley
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
5
|
Soubiran F, González-Cataldo F, Driver KP, Zhang S, Militzer B. Magnesium oxide at extreme temperatures and pressures studied with first-principles simulations. J Chem Phys 2019; 151:214104. [DOI: 10.1063/1.5126624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- François Soubiran
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- École Normale Supérieure de Lyon, Université Lyon 1, Laboratoire de Géologie de Lyon, CNRS UMR 5276, 69364 Lyon Cedex 07, France
| | - Felipe González-Cataldo
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Kevin P. Driver
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Shuai Zhang
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Department of Astronomy, University of California, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Lin W, Murillo MS, Feng Y. Pressure and energy of compressional shocks in two-dimensional Yukawa systems. Phys Rev E 2019; 100:043203. [PMID: 31770881 DOI: 10.1103/physreve.100.043203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 11/07/2022]
Abstract
The propagation of compressional shocks in two-dimensional (2D) dusty plasmas is investigated using MD simulations under various conditions. The shock Hugoniot curves of the relationship between the shock front speed D and the mean particle speed v[over ¯] after shocks are obtained and analytically fit to parabolic expressions. As the screening parameter increases, the weaker Yukawa interparticle interaction cause the shock Hugoniot curves to be more linear. Combining the obtained shock Hugoniot curves with the Rankine-Hugoniot jump relations, analytic expressions of pressure and energy after the shocks in 2D Yukawa systems are obtained, which are functions of the observable quantities, like the shock front speed D or the mean particle speed v[over ¯] or the specific volume.
Collapse
Affiliation(s)
- Wei Lin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|