1
|
Gan W, Li S, He X, Ma D. Mesoscopic modeling the interaction of two attached-wall cavitation bubbles. ULTRASONICS SONOCHEMISTRY 2025; 117:107358. [PMID: 40252562 PMCID: PMC12036034 DOI: 10.1016/j.ultsonch.2025.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
A hybrid thermal lattice Boltzmann cavitation model based on a nonorthogonal framework is developed to investigate the interaction of two attached-wall cavitation bubbles. The interaction modes are systematically analyzed, with an emphasis on how varying contact angles influence the flow and temperature distributions, as well as the evolution of wall heat flux under strong and weak interaction conditions. Bubbles formed on the hydrophobic surface display increased contact radius and greater curvature radii compared to those on the hydrophilic wall, leading to greater volumes but weaker collapse intensity. The growth rate of the bubble equivalent radius for the weak interaction modes consistently follows the relation U∝2p∞/3ρl. Additionally, bubble coalescence occurs at the interface regions along the hydrophobic surface, altering the final collapse dynamics and resulting in distinct temperature and velocity distributions. Finally, the instantaneous heat flux characteristics are explored. Due to differences in the contact points motion rate and microjet angle with the solid wall, the peak value and number of heat flux peaks vary on walls with different wettability.
Collapse
Affiliation(s)
- Weidong Gan
- School of Navigation, Wuhan University of Technology, Wuhan 430063, China; Hubei Key Laboratory of Inland Shipping Technology, Wuhan 430063, China; Tianjin Research Institute for Water Transport Engineering, Key Laboratory of Engineering Sediment, Ministry of Transport, Tianjin 300456, China
| | - Shicheng Li
- Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Xiaolong He
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; Tianfu Yongxing Laboratory, Chengdu 610000, China.
| | - Dianguang Ma
- Tianjin Research Institute for Water Transport Engineering, Key Laboratory of Engineering Sediment, Ministry of Transport, Tianjin 300456, China
| |
Collapse
|
2
|
Jäger T, Mokos A, Prasianakis NI, Leyer S. Validating the Transition Criteria from the Cassie-Baxter to the Wenzel State for Periodically Pillared Surfaces with Lattice Boltzmann Simulations. ACS OMEGA 2024; 9:10592-10601. [PMID: 38463292 PMCID: PMC10918652 DOI: 10.1021/acsomega.3c08862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Microfabrication techniques allow the development and production of artificial superhydrophobic surfaces that possess a precisely controlled roughness at the micrometer level, typically achieved through the arrangement of micropillar structures in periodic patterns. In this work, we analyze the stability and energy barrier of droplets in the Cassie-Baxter (CB) state on such periodic patterns. In addition, we further develop a transition criterion using the CB equation and derive an improved version which allows predicting for which pillar geometries, equilibrium contact angles, and droplet volumes the CB state switches from a metastable to an unstable state. This enables a comparison with existing experiments and three-dimensional multiphase Lattice Boltzmann simulations for different pillar distances, two contact angles, and two droplet volumes, where a good agreement has been found.
Collapse
Affiliation(s)
- Tobias Jäger
- Department
of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Luxembourg L-1359, Luxembourg
| | - Athanasios Mokos
- Transport
Mechanisms Group, Laboratory for Waste Management, Paul Scherrer Institute, PSI, Villigen 5232, Switzerland
| | - Nikolaos I. Prasianakis
- Transport
Mechanisms Group, Laboratory for Waste Management, Paul Scherrer Institute, PSI, Villigen 5232, Switzerland
| | - Stephan Leyer
- Department
of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Luxembourg L-1359, Luxembourg
| |
Collapse
|
3
|
Wang J, Lai Y, Wang X, Ji H. Advances in ultrasonic treatment of oily sludge: mechanisms, industrial applications, and integration with combined treatment technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14466-14483. [PMID: 38296931 DOI: 10.1007/s11356-024-32089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
In the petroleum sector, the generation of oily sludge is an unavoidable byproduct, necessitating the development of efficient treatment strategies for both economic gain and the mitigation of negative environmental impacts. The intricate composition of oily sludge poses a formidable challenge, as existing treatment methodologies frequently fall short of achieving baseline disposal criteria. The processes of demulsification and dehydration are integral to diminishing the oil content and reclaiming valuable crude oil, thereby playing a critical role in the management of oily sludge. Among the myriad of treatment solutions, ultrasonic technology has emerged as a particularly effective physical method, celebrated for its diverse applications and lack of resultant secondary pollution. This comprehensive review delves into the underlying mechanisms and recent progress in the ultrasonic treatment of oily sludge, with a specific focus on its industrial implementations within China. Both isolated ultrasonic treatment and its combination with other technological approaches have proven successful in addressing oily sludge challenges. The adoption of industrial-scale systems that amalgamate ultrasound with multi-technological processes has shown marked enhancements in treatment efficacy. The fusion of ultrasonic technology with other cutting-edge methods holds considerable potential across a spectrum of applications. To fulfill the goals of resource recovery, reduction, and neutralization in oily sludge management, the industrial adoption and adept application of a variety of treatment technologies are imperative.
Collapse
Affiliation(s)
- Jian Wang
- University of Science and Technology Beijing, Beijing, China
| | - Yujian Lai
- University of Science and Technology Beijing, Beijing, China
| | - Xuemei Wang
- University of Science and Technology Beijing, Beijing, China
| | - Hongbing Ji
- University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
4
|
Kaykanat SI, Uguz AK. The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery. BIOMICROFLUIDICS 2023; 17:021502. [PMID: 37153864 PMCID: PMC10162024 DOI: 10.1063/5.0130769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
Targeted drug delivery is proposed to reduce the toxic effects of conventional therapeutic methods. For that purpose, nanoparticles are loaded with drugs called nanocarriers and directed toward a specific site. However, biological barriers challenge the nanocarriers to convey the drug to the target site effectively. Different targeting strategies and nanoparticle designs are used to overcome these barriers. Ultrasound is a new, safe, and non-invasive drug targeting method, especially when combined with microbubbles. Microbubbles oscillate under the effect of the ultrasound, which increases the permeability of endothelium, hence, the drug uptake to the target site. Consequently, this new technique reduces the dose of the drug and avoids its side effects. This review aims to describe the biological barriers and the targeting types with the critical features of acoustically driven microbubbles focusing on biomedical applications. The theoretical part covers the historical developments in microbubble models for different conditions: microbubbles in an incompressible and compressible medium and bubbles encapsulated by a shell. The current state and the possible future directions are discussed.
Collapse
Affiliation(s)
- S. I. Kaykanat
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Türkiye
| | | |
Collapse
|
5
|
Li Q, Xing Y, Huang R. Equations of state in multiphase lattice Boltzmann method revisited. Phys Rev E 2023; 107:015301. [PMID: 36797954 DOI: 10.1103/physreve.107.015301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
The single-component multiphase fluids can be described by a single equation of state (EOS), and various EOSs have been employed in the multiphase lattice Boltzmann (LB) method. In this work, we revisit five commonly used EOSs, including the van der Waals EOS, the Redlich-Kwong EOS, the Redlich-Kwong-Soave EOS, the Peng-Robinson EOS, and the Carnahan-Starling EOS. The recent multiphase LB model with self-tuning EOS is employed because of its thermodynamic consistency in a strict sense and clear physical picture at the microscopic level. First, the way to incorporate these multiphase EOSs is proposed. Two scaling factors are introduced to independently adjust the surface tension and interface thickness, and the lattice sound speed is EOS-dependent to ensure the numerical stability. Then, numerical tests are conducted to validate the incorporations of these EOSs and compare their numerical performances. The surface tension and interface thickness are set to the same values for different EOSs in the comparisons. The liquid and gas densities, surface tension, and interface thickness by the LB simulation agree well with the thermodynamic results. The maximum density ratios achieved with different EOSs are at the same level and could be very close to each other when the interface thickness is relatively small. The effects of multiphase EOS, density ratio, and dimensionless relaxation time on the spurious current are discussed in detail. It is interesting to find the van der Waals EOS shows the best numerical performance in reducing the spurious current.
Collapse
Affiliation(s)
- Qing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Yueyan Xing
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Rongzong Huang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
6
|
Jäger T, Mokos A, Prasianakis NI, Leyer S. Pore-Level Multiphase Simulations of Realistic Distillation Membranes for Water Desalination. MEMBRANES 2022; 12:1112. [PMID: 36363667 PMCID: PMC9693480 DOI: 10.3390/membranes12111112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Membrane distillation (MD) is a thermally driven separation process that is operated below boiling point. Since the performance of MD modules is still comparatively low, current research aims to improve the understanding of the membrane structure and its underlying mechanisms at the pore level. Based on existing realistic 3D membrane geometries (up to 0.5 billion voxels with 39nm resolution) obtained from ptychographic X-ray computed tomography, the D3Q27 lattice Boltzmann (LB) method was used to investigate the interaction of the liquid and gaseous phase with the porous membrane material. In particular, the Shan and Chen multi-phase model was used to simulate multi-phase flow at the pore level. We investigated the liquid entry pressure of different membrane samples and analysed the influence of different micropillar structures on the Wenzel and Cassie-Baxter state of water droplets on rough hydrophobic surfaces. Moreover, we calculated the liquid entry pressure required for entering the membrane pores and extracted realistic water contact surfaces for different membrane samples. The influence of the micropillars and flow on the water-membrane contact surface was investigated. Finally, we determined the air-water interface within a partially saturated membrane, finding that the droplet size and distribution correlated with the porosity of the membrane.
Collapse
Affiliation(s)
- Tobias Jäger
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, L-1359 Luxembourg, Luxembourg
| | - Athanasios Mokos
- Transport Mechanisms Group, Laboratory for Waste Management, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Nikolaos I. Prasianakis
- Transport Mechanisms Group, Laboratory for Waste Management, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Stephan Leyer
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, L-1359 Luxembourg, Luxembourg
| |
Collapse
|
7
|
Chi P, Chaoyue Z, Qinfeng L, Shilong Z, Yu S, Hairui L, Jianhong F. Erosion characteristics and failure mechanism of reservoir rocks under the synergistic effect of ultrasonic cavitation and micro-abrasives. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.09.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Gai S, Peng Z, Moghtaderi B, Yu J, Doroodchi E. Ice nucleation of water droplet containing solid particles under weak ultrasonic vibration. ULTRASONICS SONOCHEMISTRY 2021; 70:105301. [PMID: 32777680 PMCID: PMC7786566 DOI: 10.1016/j.ultsonch.2020.105301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Water with small volume (a few microlitres or less) often maintains its liquid state even at temperatures much lower than 0 °C. In this study, we examine the onset of ice nucleation in micro-sized water droplets with immersed solid particles under weak ultrasonic vibrations. The experimental results show that ice nucleation inside the water droplets can be successfully induced at relatively high temperatures. The experimental observations indicate that the nucleation sites are commonly encountered in the region between the particle and the substrate. A numerical study is conducted to gain insight into the possible underlying phenomenon for ice nucleation in such systems. The simulation results show that the collapse of cavitation bubbles in the crevice at the particle surface is structure sensitive with the hemisphere-shape crevice generating pressures as high as 1.63 GPa, which is theoretically suitable for inducing ice nucleation.
Collapse
Affiliation(s)
- Shaolei Gai
- Discipline of Chemical Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zhengbiao Peng
- Discipline of Chemical Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Behdad Moghtaderi
- Discipline of Chemical Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jianglong Yu
- Discipline of Chemical Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Elham Doroodchi
- Discipline of Chemical Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
9
|
Ezzatneshan E, Vaseghnia H. Simulation of collapsing cavitation bubbles in various liquids by lattice Boltzmann model coupled with the Redlich-Kwong-Soave equation of state. Phys Rev E 2020; 102:053309. [PMID: 33327092 DOI: 10.1103/physreve.102.053309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/28/2020] [Indexed: 11/07/2022]
Abstract
A computational technique based on the pseudo-potential multiphase lattice Boltzmann method (LBM) is employed to investigate the collapse dynamics of cavitation bubbles of various liquids in the vicinity of the solid surface with different wettability conditions. The Redlich-Kwong-Soave equation of state (EoS) that includes an acentric factor is incorporated to consider the physical properties of water (H_{2}O), liquid nitrogen (LN_{2}), and liquid hydrogen (LH_{2}) in the present simulations. Accuracy and performance of the present multiphase LBM are examined by simulation of the homogenous and heterogeneous cavitation phenomena. The good agreement of the results obtained based on the present solution algorithm in comparison with the available data confirms the validity and capability of the multiphase LBM employed. Then, the cavitation bubble collapse near the solid wall is studied by considering the H_{2}O, LN_{2}, and LH_{2} fluids, and the wettability effect of the surface on the collapse dynamics is investigated. The obtained results demonstrate that the collapse phenomenon for the H_{2}O is more aggressive than that of the LH_{2} and LN_{2}. The cavitation bubble of the water has a shorter collapse time with an intense liquid jet, while the collapse process in the LN_{2} takes a longer time due to the larger radius of its bubble at the rebound. Also, this study demonstrates that the increment of the hydrophobicity of the wall causes less energy absorption by the solid surface from the liquid phase around the bubble that leads to form a liquid jet with higher kinetic energy. Therefore, the bubble collapse process occurs more quickly for hydrophobic surfaces, regardless of the fluids considered. The present study shows that the pseudopotential LBM with incorporating an appropriate EoS and a robust forcing scheme is an efficient numerical technique for simulation of the dynamics of the cavitation bubble collapse in different fluids.
Collapse
Affiliation(s)
- Eslam Ezzatneshan
- Aerospace Engineering Group, Department of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran
| | - Hamed Vaseghnia
- Aerospace Engineering Group, Department of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
10
|
Lais H, Lowe PS, Gan TH, Wrobel LC. Numerical investigation of design parameters for optimization of the in-situ ultrasonic fouling removal technique for pipelines. ULTRASONICS SONOCHEMISTRY 2019; 56:94-104. [PMID: 31101293 DOI: 10.1016/j.ultsonch.2019.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Fouling build-up in engineering assets is a known problem and, as a solution, the application of power ultrasonic for in-situ fouling removal has gained much attention from the industry. Current state-of-the-art fouling removal includes the use of hydraulic, chemical and manual techniques. Much research has been conducted to advance the knowledge on the potential uses of ultrasonics across different fouling applications, primarily in reverse osmosis membranes and heat exchangers. However, the optimization of in-situ ultrasonic fouling removal has not yet been investigated and is still in its infancy. The present study uses a previously experimentally-validated numerical model to conduct a parametric study in order to optimize the technique. Focus was given to the adoption of ultrasonics for large diameter pipes. Therefore, this investigation was conducted on a 6 in. schedule 40-carbon steel pipe. Parameters investigated include: optimum number of transducers to remove fouling in long pipes from a single transducer location; performance at elevated temperature; different fluid domains; optimum voltage; variety of input signals and incremental thickness of fouling. Depending on the particular studied conditions, the possible fouling removal of up to +/-3 m from a single transducer location is demonstrated in a 6 in. schedule 40 carbon steel pipe.
Collapse
Affiliation(s)
- Habiba Lais
- Brunel University, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK
| | - Premesh S Lowe
- Brunel University, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK
| | - Tat-Hean Gan
- TWI, Granta Park, Great Abington, Cambridge CB21 6AL, UK.
| | - Luiz C Wrobel
- Brunel University, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK
| |
Collapse
|