1
|
Helms P, Chen SW, Limmer DT. Stochastic thermodynamic bounds on logical circuit operation. Phys Rev E 2025; 111:034110. [PMID: 40247584 DOI: 10.1103/physreve.111.034110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/11/2025] [Indexed: 04/19/2025]
Abstract
Using a thermodynamically consistent, mesoscopic model for modern complementary metal-oxide-semiconductor transistors, we study an array of logical circuits and explore how their function is constrained by recent thermodynamic uncertainty relations when operating near thermal energies. For a single NOT gate, we find operating direction-dependent dynamics and a trade-off between dissipated heat and operation time certainty. For a memory storage device, we find an exponential relationship between the memory retention time and energy required to sustain that memory state. For a clock, we find that the certainty in the cycle time is maximized at biasing voltages near thermal energy, as is the trade-off between this certainty and the heat dissipated per cycle. We identify a control mechanism that can increase the cycle time certainty without an offsetting increase in heat dissipation by working at a resonance condition for the clock. These results provide a framework for assessing the thermodynamic costs of realistic computing devices, allowing for circuits to be designed and controlled for thermodynamically optimal operation.
Collapse
Affiliation(s)
- Phillip Helms
- University of California, Berkeley, Department of Chemistry, California 94720, USA
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California 94720, USA
| | - Songela W Chen
- University of California, Berkeley, Department of Chemistry, California 94720, USA
| | - David T Limmer
- University of California, Berkeley, Department of Chemistry, California 94720, USA
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, Materials Sciences Division, Berkeley, California 94720, USA
- Kavli Energy NanoScience Institute, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Zhong A, DeWeese MR. Beyond Linear Response: Equivalence between Thermodynamic Geometry and Optimal Transport. PHYSICAL REVIEW LETTERS 2024; 133:057102. [PMID: 39159082 DOI: 10.1103/physrevlett.133.057102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024]
Abstract
A fundamental result of thermodynamic geometry is that the optimal, minimal-work protocol that drives a nonequilibrium system between two thermodynamic states in the slow-driving limit is given by a geodesic of the friction tensor, a Riemannian metric defined on control space. For overdamped dynamics in arbitrary dimensions, we demonstrate that thermodynamic geometry is equivalent to L^{2} optimal transport geometry defined on the space of equilibrium distributions corresponding to the control parameters. We show that obtaining optimal protocols past the slow-driving or linear response regime is computationally tractable as the sum of a friction tensor geodesic and a counterdiabatic term related to the Fisher information metric. These geodesic-counterdiabatic optimal protocols are exact for parametric harmonic potentials, reproduce the surprising nonmonotonic behavior recently discovered in linearly biased double well optimal protocols, and explain the ubiquitous discontinuous jumps observed at the beginning and end times.
Collapse
Affiliation(s)
- Adrianne Zhong
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
3
|
Gupta D, Klapp SHL, Sivak DA. Efficient control protocols for an active Ornstein-Uhlenbeck particle. Phys Rev E 2023; 108:024117. [PMID: 37723713 DOI: 10.1103/physreve.108.024117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023]
Abstract
Designing a protocol to efficiently drive a stochastic system is an active field of research. Here we extend such control theory to an active Ornstein-Uhlenbeck particle (AOUP) in a bistable potential, driven by a harmonic trap. We find that protocols designed to minimize the excess work (up to linear response) perform better than naive protocols with constant velocity for a wide range of protocol durations.
Collapse
Affiliation(s)
- Deepak Gupta
- Nordita, Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
- Institut für Theoretische Physik, Hardenbergstr. 36, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Hardenbergstr. 36, Technische Universität Berlin, D-10623 Berlin, Germany
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
4
|
Zhang Z, Du V, Lu Z. Energy landscape design principle for optimal energy harnessing by catalytic molecular machines. Phys Rev E 2023; 107:L012102. [PMID: 36797891 DOI: 10.1103/physreve.107.l012102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Under temperature oscillation, cyclic molecular machines such as catalysts and enzymes could harness energy from the oscillatory bath and use it to drive other processes. Using an alternative geometrical approach, under fast temperature oscillation, we derive a general design principle for obtaining the optimal catalytic energy landscape that can harness energy from a temperature-oscillatory bath and use it to invert a spontaneous reaction. By driving the reaction against the spontaneous direction, the catalysts convert low free-energy product molecules to high free-energy reactant molecules. The design principle, derived for arbitrary cyclic catalysts, is expressed as a simple quadratic objective function that only depends on the reaction activation energies, and is independent of the temperature protocol. Since the reaction activation energies are directly accessible by experimental measurements, the objective function can be directly used to guide the search for optimal energy-harvesting catalysts.
Collapse
Affiliation(s)
- Zhongmin Zhang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Vincent Du
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Zhiyue Lu
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| |
Collapse
|
5
|
Abstract
F1-ATPase is a rotary molecular motor that in vivo is subject to strong nonequilibrium driving forces. There is great interest in understanding the operational principles governing its high efficiency of free-energy transduction. Here we use a near-equilibrium framework to design a nontrivial control protocol to minimize dissipation in rotating F1 to synthesize adenosine triphosphate. We find that the designed protocol requires much less work than a naive (constant-velocity) protocol across a wide range of protocol durations. Our analysis points to a possible mechanism for energetically efficient driving of F1 in vivo and provides insight into free-energy transduction for a broader class of biomolecular and synthetic machines.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, BerlinD-10623, Germany
| | - Steven J Large
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | - Shoichi Toyabe
- Department of Applied Physics, Tohoku University, Aoba 6-6-05, Sendai980-8579, Japan
| | - David A Sivak
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| |
Collapse
|
6
|
Kamizaki LP, Bonança MVS, Muniz SR. Performance of optimal linear-response processes in driven Brownian motion far from equilibrium. Phys Rev E 2022; 106:064123. [PMID: 36671193 DOI: 10.1103/physreve.106.064123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Considering the paradigmatic driven Brownian motion, we perform extensive numerical analysis on the performance of optimal linear-response processes far from equilibrium. We focus on the overdamped regime where exact optimal processes are known analytically and most experiments operate. This allows us to compare the optimal processes obtained in linear response and address their relevance to experiments using realistic parameter values from experiments with optical tweezers. Our results help assess the accuracy of perturbative methods in calculating the irreversible work for cases where the exact solution might be difficult to access. For that, we present a performance metric comparing the approximate optimal solution to the exact one. Our main result is that optimal linear-response processes can perform surprisingly well, even far from where they were expected.
Collapse
Affiliation(s)
- Lucas P Kamizaki
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil.,Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Marcus V S Bonança
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
| | - Sérgio R Muniz
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
7
|
Zhong A, DeWeese MR. Limited-control optimal protocols arbitrarily far from equilibrium. Phys Rev E 2022; 106:044135. [PMID: 36397571 DOI: 10.1103/physreve.106.044135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Recent studies have explored finite-time dissipation-minimizing protocols for stochastic thermodynamic systems driven arbitrarily far from equilibrium, when granted full external control to drive the system. However, in both simulation and experimental contexts, systems often may only be controlled with a limited set of degrees of freedom. Here, going beyond slow- and fast-driving approximations employed in previous studies, we obtain exact finite-time optimal protocols for this limited-control setting. By working with deterministic Fokker-Planck probability density time evolution, we can frame the work-minimizing protocol problem in the standard form of an optimal control theory problem. We demonstrate that finding the exact optimal protocol is equivalent to solving a system of Hamiltonian partial differential equations, which in many cases admit efficiently calculable numerical solutions. Within this framework, we reproduce analytical results for the optimal control of harmonic potentials and numerically devise optimal protocols for two anharmonic examples: varying the stiffness of a quartic potential and linearly biasing a double-well potential. We confirm that these optimal protocols outperform other protocols produced through previous methods, in some cases by a substantial amount. We find that for the linearly biased double-well problem, the mean position under the optimal protocol travels at a near-constant velocity. Surprisingly, for a certain timescale and barrier height regime, the optimal protocol is also nonmonotonic in time.
Collapse
Affiliation(s)
- Adrianne Zhong
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA and Redwood Center For Theoretical Neuroscience and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Blaber S, Sivak DA. Optimal control with a strong harmonic trap. Phys Rev E 2022; 106:L022103. [PMID: 36110009 DOI: 10.1103/physreve.106.l022103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Quadratic trapping potentials are widely used to experimentally probe biopolymers and molecular machines and drive transitions in steered molecular-dynamics simulations. Approximating energy landscapes as locally quadratic, we design multidimensional trapping protocols that minimize dissipation. The designed protocols are easily solvable and applicable to a wide range of systems. The approximation does not rely on either fast or slow limits and is valid for any duration provided the trapping potential is sufficiently strong. We demonstrate the utility of the designed protocols with a simple model of a periodically driven rotary motor. Our results elucidate principles of effective single-molecule manipulation and efficient nonequilibrium free-energy estimation.
Collapse
Affiliation(s)
- Steven Blaber
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
9
|
Kasper AKS, Sivak DA. Modeling work-speed-accuracy trade-offs in a stochastic rotary machine. Phys Rev E 2021; 101:032110. [PMID: 32289954 DOI: 10.1103/physreve.101.032110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 01/30/2020] [Indexed: 11/07/2022]
Abstract
Molecular machines are stochastic systems that catalyze the energetic processes keeping living cells alive and structured. Inspired by the examples of F_{1}-ATP synthase and the bacterial flagellum, we present a minimal model of an externally driven stochastic rotary machine. We explore the trade-offs of work, driving speed, and driving accuracy when changing driving strength, speed, and the underlying system dynamics. We find an upper bound on accuracy and work for a particular speed. Our results favor slow driving when tasked with minimizing the work-accuracy ratio and maximizing the rate of successful cycles. Finally, in the parameter regime mapping to the dynamics of F_{1}-ATP synthase, we find a significant decay of driving accuracy at physiological rotation rates, raising questions about how ATP synthase achieves reasonable or even remarkable efficiency in vivo.
Collapse
Affiliation(s)
- Alexandra K S Kasper
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6
| |
Collapse
|
10
|
|
11
|
Blaber S, Sivak DA. Optimal control of protein copy number. Phys Rev E 2020; 101:022118. [PMID: 32168689 DOI: 10.1103/physreve.101.022118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/16/2020] [Indexed: 11/07/2022]
Abstract
Cell-cell communication is often achieved by secreted signaling molecules that bind membrane-bound receptors. A common class of such receptors are G-protein coupled receptors, where extracellular binding induces changes on the membrane affinity near the receptor for certain cytosolic proteins, effectively altering their chemical potential. We analyze the minimum-dissipation schedules for dynamically changing chemical potential to induce steady-state changes in protein copy-number distributions, and illustrate with analytic solutions for linear chemical reaction networks. Protocols that change chemical potential on biologically relevant timescales are experimentally accessible using optogenetic manipulations, and our framework provides nontrivial predictions about functional dynamical cell-cell interactions.
Collapse
Affiliation(s)
- Steven Blaber
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
12
|
Chiuchiù D, Ferrare J, Pigolotti S. Assembly of heteropolymers via a network of reaction coordinates. Phys Rev E 2019; 100:062502. [PMID: 31962425 DOI: 10.1103/physreve.100.062502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 06/10/2023]
Abstract
In biochemistry, heteropolymers encoding biological information are assembled out of equilibrium by sequentially incorporating available monomers found in the environment. Current models of polymerization treat monomer incorporation as a sequence of discrete chemical reactions between intermediate metastable states. In this paper, we use ideas from reaction rate theory and describe nonequilibrium assembly of a heteropolymer via a continuous reaction coordinate. Our approach allows for estimating the copy error and incorporation speed from the Gibbs free energy landscape of the process. We apply our theory to several examples from a simple reaction characterized by a free energy barrier to more complex cases incorporating error correction mechanisms, such as kinetic proofreading.
Collapse
Affiliation(s)
- Davide Chiuchiù
- Biological Complexity Unit, Okinawa Institute for Science and Technology, 1919-1 Tancha, Onna, Kunigami-gun, Okinawa 904-0412, Japan
| | - James Ferrare
- Biological Complexity Unit, Okinawa Institute for Science and Technology, 1919-1 Tancha, Onna, Kunigami-gun, Okinawa 904-0412, Japan
- Tulane University, 6823 St. Charles Avenue, New Orleans, Lousiana 70118, USA
| | - Simone Pigolotti
- Biological Complexity Unit, Okinawa Institute for Science and Technology, 1919-1 Tancha, Onna, Kunigami-gun, Okinawa 904-0412, Japan
| |
Collapse
|
13
|
Abstract
Biomolecular machines are protein complexes that convert between different forms of free energy. They are utilized in nature to accomplish many cellular tasks. As isothermal nonequilibrium stochastic objects at low Reynolds number, they face a distinct set of challenges compared with more familiar human-engineered macroscopic machines. Here we review central questions in their performance as free energy transducers, outline theoretical and modeling approaches to understand these questions, identify both physical limits on their operational characteristics and design principles for improving performance, and discuss emerging areas of research.
Collapse
Affiliation(s)
- Aidan I Brown
- Department of Physics , University of California, San Diego , La Jolla , California 92093 , United States
| | - David A Sivak
- Department of Physics , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|