1
|
Bao L, Kang WB, Zhu BC, Xiao Y. Charge Arrangement Determines the Sensitivity of Aggregation Patterns between Peptide-Chains to the Surrounding Ionic Environment. J Chem Inf Model 2025; 65:950-965. [PMID: 39761364 DOI: 10.1021/acs.jcim.4c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The molecular basis for the liquid-liquid phase separation (LLPS) behavior of various biomolecular components in the cell is the formation of multivalent and low-affinity interactions. When the content of these components exceeds a certain critical concentration, the molecules will spontaneously coalesce to form a new liquid phase; i.e., LLPS occurs. Intrinsically disordered proteins (IDPs) are usually rich in amino acids with charged side-chains, and thus, LLPS-involving interactions between their side-chains are of great interest. However, the molecular details of the coalescence of such charged IDPs in a salt solution are still lacking. Here, we focus on two types of peptide-chains with oppositely charged amino acids in extreme arrangements and investigate their aggregation patterns in various ionic environments. The results show that the interaction patterns between peptide-chains with nonuniform charge arrangement sequences are more sensitive to the surrounding cationic environment, and Na+ ions are more likely to cause aggregation of ASP residues compared to Mg2+ ions. As the ionic concentration increases, the electrostatic interactions between oppositely charged residues are gradually converted into a negative-negative amino acid interaction network bridged by Na+ ions, while the positive charge-rich regions are more strongly inclined to be exposed to the solvent environment and gain greater freedom of movement. Simultaneously, this effect will reach saturation with a further increase of salt concentration. The present study enriches insights into the electrostatic dominant factors in phase separation phenomena at the atomic level, which will hopefully inspire the design and application of targeted LLPS in the future.
Collapse
Affiliation(s)
- Lei Bao
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Wen-Bin Kang
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Ben-Chao Zhu
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Hu G, Yu X, Li Z. Unveiling Putative Excited State and Transmission of Binding Information in the Fluoride Riboswitch. J Chem Inf Model 2024; 64:7555-7564. [PMID: 39342653 DOI: 10.1021/acs.jcim.4c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Riboswitches regulate downstream gene expression by binding to specific small molecules or ions with multiple mechanisms to transfer the binding information. In the case of the fluoride riboswitch, the transcription termination signal is conveyed through a transient excited state (ES). In this work, we performed conventional molecular dynamics (MD) simulations, totaling 180 μs, to obtain the ES structure and investigate the mechanism underlying information transmission in Mg2+/F- binding within the fluoride riboswitch aptamer. The Mg2+/F- binding pocket exhibits various conformations in its apo form. A series of ES structures were extracted from the MD trajectories of the apo form. The dynamics of the Mg2+/F- binding pocket influenced key pair A40-U48 in ES structures. The pathway connecting the binding pocket to the pair involves interactions between the phosphate groups of U7 and G8 and the nucleobases of G8-C47-U48. Our work presents a structural ensemble of the ES and elucidates a pathway for transferring Mg2+/F- binding information, thereby facilitating the understanding of how the holo-like apo state achieves transcriptional repression.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xue Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zhaojun Li
- College of Computer and Information Engineering, Dezhou University, Dezhou 253023, China
| |
Collapse
|
3
|
Hu G, Zhang Y, Yu Z, Cui T, Cui W. Dynamical characterization and multiple unbinding paths of two PreQ 1 ligands in one pocket. Phys Chem Chem Phys 2023; 25:24004-24015. [PMID: 37646322 DOI: 10.1039/d3cp03142j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Riboswitches naturally regulate gene expression in bacteria by binding to specific small molecules. Class 1 preQ1 riboswitch aptamer is an important model not only for RNA folding but also as a target for designing small molecule antibiotics due to its well-known minimal aptamer domain. Here, we ran a total of 62.4 μs conventional and enhanced-sampling molecular dynamics (MD) simulations to characterize the determinants underlying the binding of the preQ1-II riboswitch aptamer to two preQ1 ligands in one binding pocket. Decomposition of binding free energy suggested that preQ1 ligands at α and β sites interact with four nucleotides (G5, C17, C18, and A30) and two nucleotides (A12 and C31), respectively. Mg2+ ions play a crucial role in both stabilizing the binding pocket and facilitating ligand binding. The flexible preQ1 ligand at the β site leads to the top of the binding pocket loosening and thus pre-organizes the riboswitch for ligand entry. Enhanced sampling simulations further revealed that the preQ1 ligand at the α site unbinds through two orthogonal pathways, which are dependent on whether or not a β site preQ1 ligand is present. One of the two preQ1 ligands has been identified in the binding pocket, which will aid to identify the second preQ1 Ligand. Our work provides new information for designing robust ligands.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
- Laoling People's Hospital, Dezhou 253600, China
| | | | - Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Tiejun Cui
- Laoling People's Hospital, Dezhou 253600, China
| | - Wanling Cui
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
- Laoling People's Hospital, Dezhou 253600, China
| |
Collapse
|
4
|
Basu T, Chituru SV, Majumdar S. Unraveling fluctuation in gelatin and monovalent salt systems: coulombic starvation. SOFT MATTER 2023; 19:2486-2490. [PMID: 36942941 DOI: 10.1039/d3sm00080j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluctuations play a key role in biological systems. Here, fluctuations in gelatin intensify with increasing salt concentration. We find a redistribution of hydrogen bonds in protein-salt systems due to unfulfilled hydration of the charges of gelatin and salt-ions, termed as coulombic starvation. This yielded three regions; no starvation, starvation of gelatin, and both gelatin-salt. The system reaches equilibrium with all charges being partially hydrated. This will aid in interpreting protein-metal ion interactions and designing biomaterials.
Collapse
Affiliation(s)
- Tithi Basu
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502284, India.
| | - Sunetra V Chituru
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502284, India.
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502284, India.
| |
Collapse
|
5
|
Bao L, Xiao Y. Exploring the Binding Process of Cognate Ligand to Add Adenine Riboswitch Aptamer by Using Explicit Solvent Molecular Dynamics (MD) Simulation. Methods Mol Biol 2023; 2568:103-122. [PMID: 36227564 DOI: 10.1007/978-1-0716-2687-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Riboswitches are RNA-structured elements that modulate gene expression by changing their conformation in response to specific metabolite ligand binding. Therefore, the biological functions of riboswitches mainly depend on the switching of secondary and three-dimensional structures in the presence and absence of the metabolite ligands. However, the binding mechanisms of cognate ligands to riboswitches are still not well understood. Here, we have introduced how to use explicit solvent molecular dynamics (MD) simulation to observe the binding process of cognate ligand to add adenine riboswitch aptamer at the atomic level. In addition, we have analyzed the driving factors of the binding process and calculated the binding free energy based on the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) method.
Collapse
Affiliation(s)
- Lei Bao
- School of Public Health, Hubei University of Medicine, Shiyan, China.
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Chen J, Zeng Q, Wang W, Sun H, Hu G. Decoding the Identification Mechanism of an SAM-III Riboswitch on Ligands through Multiple Independent Gaussian-Accelerated Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:6118-6132. [PMID: 36440874 DOI: 10.1021/acs.jcim.2c00961] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S-Adenosyl-l-methionine (SAM)-responsive riboswitches play a central role in the regulation of bacterial gene expression at the level of transcription attenuation or translation inhibition. In this study, multiple independent Gaussian-accelerated molecular dynamics simulations were performed to decipher the identification mechanisms of SAM-III (SMK) on ligands SAM, SAH, and EEM. The results reveal that ligand binding highly affects the structural flexibility, internal dynamics, and conformational changes of SAM-III. The dynamic analysis shows that helices P3 and P4 as well as two junctions J23 and J24 of SAM-III are highly susceptible to ligand binding. Analyses of free energy landscapes suggest that ligand binding induces different free energy profiles of SAM-III, which leads to the difference in identification sites of SAM-III on ligands. The information on ligand-nucleotide interactions not only uncovers that the π-π, cation-π, and hydrogen bonding interactions drive identification of SAM-III on the three ligands but also reveals that different electrostatic properties of SAM, SAH, and EEM alter the active sites of SAM-III. Meanwhile, the results also verify that the adenine group of SAM, SAH, and EEM is well recognized by conserved nucleotides G7, A29, U37, A38, and G48. We expect that this study can provide useful information for understanding the applications of SAM-III in chemical, synthetic RNA biology, and biomedical fields.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Qingkai Zeng
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou253023, China
| |
Collapse
|
7
|
Zhang J, Fakharzadeh A, Roland C, Sagui C. RNA as a Major-Groove Ligand: RNA-RNA and RNA-DNA Triplexes Formed by GAA and UUC or TTC Sequences. ACS OMEGA 2022; 7:38728-38743. [PMID: 36340174 PMCID: PMC9631886 DOI: 10.1021/acsomega.2c04358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Friedreich's ataxia is associated with noncanonical nucleic acid structures that emerge when GAA:TTC repeats in the first intron of the FXN gene expand beyond a critical number of repeats. Specifically, the noncanonical repeats are associated with both triplexes and R-loops. Here, we present an in silico investigation of all possible triplexes that form by attaching a third RNA strand to an RNA:RNA or DNA:DNA duplex, complementing previous DNA-based triplex studies. For both new triplexes results are similar. For a pyridimine UUC+ third strand, the parallel orientation is stable while its antiparallel counterpart is unstable. For a neutral GAA third strand, the parallel conformation is stable. A protonated GA+A third strand is stable in both parallel and antiparallel orientations. We have also investigated Na+ and Mg2+ ion distributions around the triplexes. The presence of Mg2+ ions helps stabilize neutral, antiparallel GAA triplexes. These results (along with previous DNA-based studies) allow for the emergence of a complete picture of the stability and structural characteristics of triplexes based on the GAA and TTC/UUC sequences, thereby contributing to the field of trinucleotide repeats and the associated unusual structures that trigger expansion.
Collapse
|
8
|
Potential effects of metal ion induced two-state allostery on the regulatory mechanism of add adenine riboswitch. Commun Biol 2022; 5:1120. [PMID: 36273041 PMCID: PMC9588036 DOI: 10.1038/s42003-022-04096-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Riboswitches normally regulate gene expression through structural changes in response to the specific binding of cellular metabolites or metal ions. Taking add adenine riboswitch as an example, we explore the influences of metal ions (especially for K+ and Mg2+ ions) on the structure and dynamics of riboswitch aptamer (with and without ligand) by using molecular dynamic (MD) simulations. Our results show that a two-state transition marked by the structural deformation at the connection of J12 and P1 (CJ12-P1) is not only related to the binding of cognate ligands, but also strongly coupled with the change of metal ion environments. Moreover, the deformation of the structure at CJ12-P1 can be transmitted to P1 directly connected to the expression platform in multiple ways, which will affect the structure and stability of P1 to varying degrees, and finally change the regulation state of this riboswitch. Molecular dynamic simulations are employed to assess the influence of metal ions on riboswitch structure and dynamics, suggesting a conformational control of riboswitch aptamers by metal ions before ligand binding.
Collapse
|
9
|
Ramachandran V, Mainan A, Roy S. Dynamic effects of the spine of hydrated magnesium on viral RNA pseudoknot structure. Phys Chem Chem Phys 2022; 24:24570-24581. [PMID: 36193826 DOI: 10.1039/d2cp01075e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the cellular environment, a viral RNA Pseudoknot (PK) structure is responsive to its prevailing ion atmosphere created by a mixture of monovalent and divalent cations. We investigate the influence of such a mixed-salt environment on RNA-PK structure at an atomic resolution through three sets of 1.5 μs explicit solvent molecular dynamics (MD) simulations and also by building a dynamic counterion-condensation (DCC) model at varying divalent Mg2+ concentrations. The DCC model includes explicit interaction of the ligand and adjacent chelated Mg2+ by extending the recently developed generalized Manning condensation model. Its implementation within an all-atom structure-based molecular dynamics framework bolsters its opportunity to explore large-length scale and long-timescale phenomena associated with complex RNA systems immersed in its dynamic ion environment. In the present case of RNA-PK, both explicit MD and DCC simulations reveal a spine of hydrated-Mg2+ to induce stem-I and stem-II closure where the minor groove between these stems is akin to breathing. Mg2+ mediated minor-groove narrowing is coupled with local base-flipping dynamics of a base triple and quadruple, changing the stem structure of such RNA. Contrary to the conversational view of the indispensable need for Mg2+ for the tertiary structure of RNA, the study warns about the plausible detrimental effect of specific Mg2+-phosphate interactions on the RNA-PK structure beyond a certain concentration of Mg2+.
Collapse
Affiliation(s)
- Vysakh Ramachandran
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Avijit Mainan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
10
|
Kumar S, Reddy G. TPP Riboswitch Populates Holo-Form-like Structure Even in the Absence of Cognate Ligand at High Mg 2+ Concentration. J Phys Chem B 2022; 126:2369-2381. [PMID: 35298161 DOI: 10.1021/acs.jpcb.1c10794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Riboswitches are noncoding RNA that regulate gene expression by folding into specific three-dimensional structures (holo-form) upon binding by their cognate ligand in the presence of Mg2+. Riboswitch functioning is also hypothesized to be under kinetic control requiring large cognate ligand concentrations. We ask the question under thermodynamic conditions, can the riboswitches populate structures similar to the holo-form only in the presence of Mg2+ and absence of cognate ligand binding. We addressed this question using thiamine pyrophosphate (TPP) riboswitch as a model system and computer simulations using a coarse-grained model for RNA. The folding free energy surface (FES) shows that with the initial increase in Mg2+ concentration ([Mg2+]), the aptamer domain (AD) of TPP riboswitch undergoes a barrierless collapse in its dimensions. On further increase in [Mg2+], intermediates separated by barriers appear on the FES, and one of the intermediates has a TPP ligand-binding competent structure. We show that site-specific binding of the Mg2+ aids in the formation of tertiary contacts. For [Mg2+] greater than physiological concentration, AD folds into a structure similar to the crystal structure of the TPP holo-form even in the absence of the TPP ligand. The folding kinetics shows that TPP AD populates an intermediate due to the misalignment of two arms present in the structure, which acts as a kinetic trap, leading to larger folding timescales. The predictions of the intermediate structures from the simulations are amenable for experimental verification.
Collapse
Affiliation(s)
- Sunil Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
11
|
Hu G, Zhou HX. Binding free energy decomposition and multiple unbinding paths of buried ligands in a PreQ1 riboswitch. PLoS Comput Biol 2021; 17:e1009603. [PMID: 34767553 PMCID: PMC8612554 DOI: 10.1371/journal.pcbi.1009603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/24/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022] Open
Abstract
Riboswitches are naturally occurring RNA elements that control bacterial gene expression by binding to specific small molecules. They serve as important models for RNA-small molecule recognition and have also become a novel class of targets for developing antibiotics. Here, we carried out conventional and enhanced-sampling molecular dynamics (MD) simulations, totaling 153.5 μs, to characterize the determinants of binding free energies and unbinding paths for the cognate and synthetic ligands of a PreQ1 riboswitch. Binding free energy analysis showed that two triplets of nucleotides, U6-C15-A29 and G5-G11-C16, contribute the most to the binding of the cognate ligands, by hydrogen bonding and by base stacking, respectively. Mg2+ ions are essential in stabilizing the binding pocket. For the synthetic ligands, the hydrogen-bonding contributions of the U6-C15-A29 triplet are significantly compromised, and the bound state resembles the apo state in several respects, including the disengagement of the C15-A14-A13 and A32-G33 base stacks. The bulkier synthetic ligands lead to significantly loosening of the binding pocket, including extrusion of the C15 nucleobase and a widening of the C15-C30 groove. Enhanced-sampling simulations further revealed that the cognate and synthetic ligands unbind in almost opposite directions. Our work offers new insight for designing riboswitch ligands. Riboswitches are bacterial RNA elements that change structures upon binding a cognate ligand. They are of great interest not only for understanding gene regulation but also as targets for designing small-molecule antibiotics and chemical tools. Understanding the molecular determinants for ligand affinity and selectivity is thus crucial for designing synthetic ligands. Here we carried out extensive molecular dynamics simulations of a PreQ1 riboswitch bound to either cognate or synthetic ligands. By comparing and contrasting these two groups of ligands, we learn how the chemical (e.g., number of hydrogen bond donors and acceptors) and physical (e.g., molecular size) features of ligands affect binding affinity and ligand exit paths. While the number of hydrogen bond donors and acceptors is a key determinant for RNA binding affinity, the ligand size affects the rigidity of the binding pocket and thereby regulates the unbinding of the ligand. These lessons provide guidance for designing riboswitch ligands.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
12
|
Zhou T, Wang H, Zeng C, Zhao Y. RPocket: an intuitive database of RNA pocket topology information with RNA-ligand data resources. BMC Bioinformatics 2021; 22:428. [PMID: 34496744 PMCID: PMC8424408 DOI: 10.1186/s12859-021-04349-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background RNA regulates a variety of biological functions by interacting with other molecules. The ligand often binds in the RNA pocket to trigger structural changes or functions. Thus, it is essential to explore and visualize the RNA pocket to elucidate the structural and recognition mechanism for the RNA-ligand complex formation. Results In this work, we developed one user-friendly bioinformatics tool, RPocket. This database provides geometrical size, centroid, shape, secondary structure element for RNA pocket, RNA-ligand interaction information, and functional sites. We extracted 240 RNA pockets from 94 non-redundant RNA-ligand complex structures. We developed RPDescriptor to calculate the pocket geometrical property quantitatively. The geometrical information was then subjected to RNA-ligand binding analysis by incorporating the sequence, secondary structure, and geometrical combinations. This new approach takes advantage of both the atom-level precision of the structure and the nucleotide-level tertiary interactions. The results show that the higher-level topological pattern indeed improves the tertiary structure prediction. We also proposed a potential mechanism for RNA-ligand complex formation. The electrostatic interactions are responsible for long-range recognition, while the Van der Waals and hydrophobic contacts for short-range binding and optimization. These interaction pairs can be considered as distance constraints to guide complex structural modeling and drug design. Conclusion RPocket database would facilitate RNA-ligand engineering to regulate the complex formation for biological or medical applications. RPocket is available at http://zhaoserver.com.cn/RPocket/RPocket.html. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04349-4.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Physics, Institute of Biophysics, Central China Normal University, Wuhan, 430079, China
| | - Huiwen Wang
- Department of Physics, Institute of Biophysics, Central China Normal University, Wuhan, 430079, China
| | - Chen Zeng
- Department of Physics, George Washington University, Washington, DC, 20052, USA
| | - Yunjie Zhao
- Department of Physics, Institute of Biophysics, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
13
|
Chen J, Li N, Wang X, Chen J, Zhang JZH, Zhu T. Molecular mechanism related to the binding of fluorophores to Mango-II revealed by multiple-replica molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:10636-10649. [PMID: 33904542 DOI: 10.1039/d0cp06438f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recently, RNA aptamers activating small-molecule fluorophores have been successfully applied to tag and track RNAs in vivo. It is of significance to investigate the molecular mechanism of the fluorophore-RNA aptamer bindings at the atomic level to seek a possible pathway to enhance the fluorescence efficiency of fluorophores. In this work, multiple replica molecular dynamics (MRMD) simulations, essential dynamics (ED) analysis, and hierarchical clustering analysis were coupled to probe the effect of A22U mutation on the binding of two fluorophores, TO1-Biotin (TO1) and TO3-Biotin (TO3), to the Mango-II RNA aptamer (Mango-II). ED analysis reveals that A22U induces alterations in the binding pocket and sites of TO1 and TO3 to the Mango-II, which in turn tunes the fluorophore-RNA interface and changes the interactions of TO1 and TO3 with separate nucleotides of Mango-II. Dynamics analyses also uncover that A22U exerts the opposite impact on the molecular surface areas of the Mango-II and sugar puckers of nucleotides 22 and 23 in Mango-II complexed with TO1 and TO3. Moreover, the calculations of binding free energies suggest that A22U strengthens the binding ability of TO1 to the mutated Mango-II but weakens TO3 to the mutated Mango-II when compared with WT. These findings imply that point mutation in nucleotides possibly tune the fluorescence of fluorophores binding to RNA aptamers, providing a possible scheme to enhance the fluorescence of fluorophores.
Collapse
Affiliation(s)
- Junxiao Chen
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, People's Republic of China. and School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, 250353, People's Republic of China
| | - Na Li
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, People's Republic of China.
| | - Xingyu Wang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, People's Republic of China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, People's Republic of China.
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, People's Republic of China. and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, People's Republic of China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, People's Republic of China. and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, People's Republic of China and Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
14
|
Wang L, Wang Y, Yang Z, Xu S, Li H. Binding Selectivity of Inhibitors toward Bromodomains BAZ2A and BAZ2B Uncovered by Multiple Short Molecular Dynamics Simulations and MM-GBSA Calculations. ACS OMEGA 2021; 6:12036-12049. [PMID: 34056358 PMCID: PMC8154142 DOI: 10.1021/acsomega.1c00687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Two Bromodomain-Containing proteins BAZ2A and BAZ2B are responsible for remodeling chromatin and regulating noncoding RNAs. As for our current studies, integration of multiple short molecular dynamics simulations (MSMDSs) with molecular mechanics generalized Born surface area (MM-GBSA) method is adopted for insights into binding selectivity of three small molecules D8Q, D9T and UO1 to BAZ2A against BAZ2B. The calculations of MM-GBSA unveil that selectivity of inhibitors toward BAZ2A and BAZ2B highly depends on the enthalpy changes and the details uncover that D8Q has better selectivity toward BAZ2A than BAZ2B, D9T more favorably bind to BAZ2B than BAZ2A, and UO1 does not show obvious selectivity toward these two proteins. The analysis of interaction network between residues and inhibitors indicates that seven residues are mainly responsible for the selectivity of D8Q, six residues for D9T and four residues provide significant contributions to associations of UO1 with two proteins. Moreover the analysis of interaction network not only reveals warm spots of inhibitor bindings to BAZ2A and BAZ2B but also unveils that common residue pairs, including (W1816, W1887), (P1817, P1888), (F1818, F1889), (V1822, V1893), (N1823, N1894),(L1826, L1897), (V1827, V1898), (F1872, F1943), (N1873, N1944) and (V1879, I1950) belonging to (BAZ2A, BAZ2B), induce mainly binding differences of inhibitors to BAZ2A and BAZ2B. Hence, insights from our current studies offer useful dynamics information relating with conformational alterations and structure-affinity relationship at atomistic levels for novel therapeutic strategies toward BAZ2A and BAZ2B.
Collapse
Affiliation(s)
- Lifei Wang
- School
of Science, Shandong Jiaotong University, 5001 Haitang Road, Changqing District, Jinan, Shandong Province 250357, China
| | - Yan Wang
- School
of Science, Shandong Jiaotong University, 5001 Haitang Road, Changqing District, Jinan, Shandong Province 250357, China
| | - Zhiyong Yang
- Department
of Physics, Jiangxi Agricultural University, 1101 Zhimin Road, Economic and Technological
Development Zone, Nanchang, Jiangxi Province 330045, China
| | - Shuobo Xu
- School
of Information Science and Electrical Engineering, Shandong Jiaotong University, 5001 Haitang Road, Changqing District, Jinan, Shandong Province 250357, China
| | - Hongyun Li
- School
of Science, Shandong Jiaotong University, 5001 Haitang Road, Changqing District, Jinan, Shandong Province 250357, China
| |
Collapse
|
15
|
Ferreira I, Amarante TD, Weber G. Salt dependent mesoscopic model for RNA at multiple strand concentrations. Biophys Chem 2021; 271:106551. [PMID: 33662903 DOI: 10.1016/j.bpc.2021.106551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Mesoscopic models can be used for the description of the thermodynamic properties of RNA duplexes. With the use of experimental melting temperatures, its parametrization can provide important insights into its hydrogen bonds and stacking interactions as has been done for high sodium concentrations. However, the RNA parametrization for lower salt concentrations is still missing due to the limited amount of published melting temperature data. While the Peyrard-Bishop (PB) parametrization was found to be largely independent of strand concentrations, it requires that all temperatures are provided at the same strand concentrations. Here we adapted the PB model to handle multiple strand concentrations and in this way we were able to make use of an experimental set of temperatures to model the hydrogen bond and stacking interactions at low and intermediate sodium concentrations. For the parametrizations we make a distinction between terminal and internal base pairs, and the resulting potentials were qualitatively similar as we obtained previously for DNA. The main difference from DNA parameters, was the Morse potentials at low sodium concentrations for terminal r(AU) which is stronger than d(AT), suggesting higher hydrogen bond strength.
Collapse
Affiliation(s)
- Izabela Ferreira
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tauanne D Amarante
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
16
|
Halder A, Kumar S, Valsson O, Reddy G. Mg 2+ Sensing by an RNA Fragment: Role of Mg 2+-Coordinated Water Molecules. J Chem Theory Comput 2020; 16:6702-6715. [PMID: 32941038 DOI: 10.1021/acs.jctc.0c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA molecules selectively bind to specific metal ions to populate their functional active states, making it important to understand their source of ion selectivity. In large RNA systems, metal ions interact with the RNA at multiple locations, making it difficult to decipher the precise role of ions in folding. To overcome this complexity, we studied the role of different metal ions (Mg2+, Ca2+, and K+) in the folding of a small RNA hairpin motif (5'-ucCAAAga-3') using unbiased all-atom molecular dynamics simulations. The advantage of studying this system is that it requires specific binding of a single metal ion to fold to its native state. We find that even for this small RNA, the folding free energy surface (FES) is multidimensional as different metal ions present in the solution can simultaneously facilitate folding. The FES shows that specific binding of a metal ion is indispensable for its folding. We further show that in addition to the negatively charged phosphate groups, the spatial organization of electronegative nucleobase atoms drives the site-specific binding of the metal ions. Even though the binding site cannot discriminate between different metal ions, RNA folds efficiently only in a Mg2+ solution. We show that the rigid network of Mg2+-coordinated water molecules facilitates the formation of important interactions in the transition state. The other metal ions such as K+ and Ca2+ cannot facilitate the formation of such interactions. These results allow us to hypothesize possible metal-sensing mechanisms in large metalloriboswitches and also provide useful insights into the design of appropriate collective variables for studying large RNA molecules using enhanced sampling methods.
Collapse
Affiliation(s)
- Antarip Halder
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Sunil Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Omar Valsson
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| |
Collapse
|
17
|
Duan Q, Tao P, Wang J, Xiao Y. Molecular dynamics study of ways of RNA base-pair formation. Phys Rev E 2020; 102:032403. [PMID: 33076020 DOI: 10.1103/physreve.102.032403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Base pairing is a fundamental phenomenon in RNA structure and function. However, although there have been considerable recent advances, some important aspects of base-pair formation are still unknown, including the ways of base-pair formation and detailed roles of metal ions. Here we show that base pairs can form through four different ways: stabilizing, bridging, rotating, and shifting. Among them the stabilizing and bridging ways involve direct binding of metal ions while the rotating and shifting ways do not in most cases. Furthermore, we find that the formations of base pairs in different positions of the hairpin stem may adopt different ways.
Collapse
Affiliation(s)
- Qiangqiang Duan
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Peng Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jun Wang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
18
|
Cruz-León S, Schwierz N. Hofmeister Series for Metal-Cation-RNA Interactions: The Interplay of Binding Affinity and Exchange Kinetics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5979-5989. [PMID: 32366101 PMCID: PMC7304902 DOI: 10.1021/acs.langmuir.0c00851] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A large variety of physicochemical properties involving RNA depends on the type of metal cation present in solution. In order to gain microscopic insight into the origin of these ion specific effects, we apply molecular dynamics simulations to describe the interactions of metal cations and RNA. For the three most common ion binding sites on RNA, we calculate the binding affinities and exchange rates of eight different mono- and divalent metal cations. Our results reveal that binding sites involving phosphate groups preferentially bind metal cations with high charge density (such as Mg2+) in inner-sphere conformations while binding sites involving N7 or O6 atoms preferentially bind cations with low charge density (such as K+). The binding affinity therefore follows a direct Hofmeister series at the backbone but is reversed at the nucleobases leading to a high selectivity of ion binding sites on RNA. In addition, the exchange rates for cation binding cover almost 5 orders of magnitude, leading to a vastly different time scale for the lifetimes of contact pairs. Taken together, the site-specific binding affinities and the specific lifetime of contact pairs provide the microscopic explanation of ion specific effects observed in a wide variety of macroscopic RNA properties. Finally, combining the results from atomistic simulations with extended Poisson-Boltzmann theory allows us to predict the distribution of metal cations around double-stranded RNA at finite concentrations and to reproduce the results of ion counting experiments with good accuracy.
Collapse
|
19
|
Bao L, Wang J, Xiao Y. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer. Phys Rev E 2020; 100:022412. [PMID: 31574664 DOI: 10.1103/physreve.100.022412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Indexed: 11/07/2022]
Abstract
Riboswitches are RNA-structured elements that modulate gene expression through changing their conformation in response to specific metabolite binding. However, the regulation mechanisms of riboswitches by ligand binding are still not well understood. At present two possible ligand-binding mechanisms have been proposed: conformational selection and induced fit. Based on explicit-solvent molecular dynamics (MD) simulations, we have studied the process of the binding of ligands (adenines) to add adenine riboswitch aptamer (AARA) in detail. Our results show that the relative high flexibility of the junction J23 of AARA allows the ligands to be captured by the binding pocket of AARA in a near-native state, which may be driven by hydrophobic and base-stacking interactions. In addition, the binding of a ligand makes the stem P1 and the junction J23 of AARA more stable than in the absence of the ligand. Generally, our analyses show that the ligand-binding process of the add adenine riboswitch may be partially embodied by a conformational selection mechanism.
Collapse
Affiliation(s)
- Lei Bao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jun Wang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
20
|
Chen J, Liu X, Zhang S, Chen J, Sun H, Zhang L, Zhang Q. Molecular mechanism with regard to the binding selectivity of inhibitors toward FABP5 and FABP7 explored by multiple short molecular dynamics simulations and free energy analyses. Phys Chem Chem Phys 2020; 22:2262-2275. [DOI: 10.1039/c9cp05704h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, fatty acid binding proteins 5 and 7 (FABP5 and FABP7) have been regarded as the prospective targets for clinically treating multiple diseases related to FABPs.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Xinguo Liu
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| | - Shaolong Zhang
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| | - Junxiao Chen
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology
- Jinan
- People's Republic of China
| | - Haibo Sun
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Lin Zhang
- School of Construction Machinery
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Qinggang Zhang
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| |
Collapse
|