1
|
Löffler RJG, Gorecki J. Dynamics of Aggregation in Systems of Self-Propelled Rods. ENTROPY (BASEL, SWITZERLAND) 2024; 26:980. [PMID: 39593924 PMCID: PMC11593231 DOI: 10.3390/e26110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
We highlight camphene-camphor-polypropylene plastic as a useful material for self-propelled objects that show aggregation while floating on a water surface. We consider self-propelled rods as an example of aggregation of objects characterized by non-trivial individual shapes with low-symmetry interactions between them. The motion of rods made of the camphene-camphor-polypropylene plastic is supported by dissipation of the surface-active molecules. The physical processes leading to aggregation and the mathematical model of the process are discussed. We analyze experimental data of aggregate formation dynamics and relate them to the system's properties. We speculate that the aggregate structure can be represented as a string of symbols, which opens the potential applicability of the phenomenon for information processing if objects floating on a water surface are regarded as reservoir computers.
Collapse
Affiliation(s)
- Richard J. G. Löffler
- Center for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark;
| | - Jerzy Gorecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
2
|
Bhattacherjee B, Hayakawa M, Shibata T. Structure formation induced by non-reciprocal cell-cell interactions in a multicellular system. SOFT MATTER 2024; 20:2739-2749. [PMID: 38436091 DOI: 10.1039/d3sm01752d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Collective cellular behavior plays a crucial role in various biological processes, ranging from developmental morphogenesis to pathological processes such as cancer metastasis. Our previous research has revealed that a mutant cell of Dictyostelium discoideum exhibits collective cell migration, including chain migration and traveling band formation, driven by a unique tail-following behavior at contact sites, which we term "contact following locomotion" (CFL). Here, we uncover an imbalance of forces between the front and rear cells within cell chains, leading to an additional propulsion force in the rear cells. Drawing inspiration from this observation, we introduce a theoretical model that incorporates non-reciprocal cell-cell interactions. Our findings highlight that the non-reciprocal interaction, in conjunction with self-alignment interactions, significantly contributes to the emergence of the observed collective cell migrations. Furthermore, we present a comprehensive phase diagram, showing distinct phases at both low and intermediate cell densities. This phase diagram elucidates a specific regime that corresponds to the experimental system.
Collapse
Affiliation(s)
- Biplab Bhattacherjee
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Masayuki Hayakawa
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
3
|
Hiraiwa T, Akiyama R, Inoue D, Kabir AMR, Kakugo A. Collision-induced torque mediates the transition of chiral dynamic patterns formed by active particles. Phys Chem Chem Phys 2022; 24:28782-28787. [PMID: 36382471 DOI: 10.1039/d2cp03879j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Controlling the patterns formed by self-propelled particles through dynamic self-organization is a challenging task. Although varieties of patterns associated with chiral self-propelled particles have been reported, essential factors that determine the morphology of the patterns have remained unclear. Here, we explore theoretically how torque formed upon collision of the particles affects the dynamic self-organization of the particles and determine the patterns. Based on a particle-based model with collision-induced torque and torque associated with self-propulsion, we find that introducing collision-induced torque turns the homogeneous bi-directionally aligned particles into rotating mono-polar flocks, which helps resolve a discrepancy in the earlier observations in microfilament gliding assays.
Collapse
Affiliation(s)
- Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore. .,Universal Biology Institute, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Ryo Akiyama
- Department of Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Daisuke Inoue
- Faculty of Design, Kyushu University, Fukuoka 815-8540, Japan
| | | | - Akira Kakugo
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
4
|
Hiraiwa T. Dynamic self-organization of migrating cells under constraints by spatial confinement and epithelial integrity. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:16. [PMID: 35212814 PMCID: PMC8881282 DOI: 10.1140/epje/s10189-022-00161-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Understanding how migrating cells can establish both dynamic structures and coherent dynamics may provide mechanistic insights to study how living systems acquire complex structures and functions. Recent studies revealed that intercellular contact communication plays a crucial role for establishing cellular dynamic self-organization (DSO) and provided a theoretical model of DSO for migrating solitary cells in a free space. However, to apply those understanding to situations in living organisms, we need to know the role of cell-cell communication for tissue dynamics under spatial confinements and epithelial integrity. Here, we expand the previous numerical studies on DSO to migrating cells subjected spatial confinement and/or epithelial integrity. An epithelial monolayer is simulated by combining the model of cellular DSO and the cellular vertex model in two dimensions for apical integrity. Under confinement to a small space, theoretical models of both solitary and epithelial cells exhibit characteristic coherent dynamics, including apparent swirling. We also find that such coherent dynamics can allow the cells to overcome the strong constraint due to spatial confinement and epithelial integrity. Furthermore, we demonstrate how epithelial cell clusters behave without spatial confinement and find various cluster dynamics, including spinning, migration and elongation.
Collapse
Affiliation(s)
- Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore, 117411.
- Universal Biology Institute, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
| |
Collapse
|
5
|
Khataee H, Czirok A, Neufeld Z. Contact inhibition of locomotion generates collective cell migration without chemoattractants in an open domain. Phys Rev E 2021; 104:014405. [PMID: 34412289 DOI: 10.1103/physreve.104.014405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/15/2021] [Indexed: 11/07/2022]
Abstract
Neural crest cells are embryonic stem cells that migrate throughout embryos and, at different target locations, give rise to the formation of a variety of tissues and organs. The directional migration of the neural crest cells is experimentally described using a process referred to as contact inhibition of locomotion, by which cells redirect their movement upon the cell-cell contacts. However, it is unclear how the migration alignment is affected by the motility properties of the cells. Here, we theoretically model the migration alignment as a function of the motility dynamics and interaction of the cells in an open domain with a channel geometry. The results indicate that by increasing the influx rate of the cells into the domain a transition takes place from random movement to an organized collective migration, where the migration alignment is maximized and the migration time is minimized. This phase transition demonstrates that the cells can migrate efficiently over long distances without any external chemoattractant information about the direction of migration just based on local interactions with each other. The analysis of the dependence of this transition on the characteristic properties of cellular motility shows that the cell density determines the coordination of collective migration whether the migration domain is open or closed. In the open domain, this density is determined by a feedback mechanism between the flux and order parameter, which characterises the alignment of collective migration. The model also demonstrates that the coattraction mechanism proposed earlier is not necessary for collective migration and a constant flux of cells moving into the channel is sufficient to produce directed movement over arbitrary long distances.
Collapse
Affiliation(s)
- Hamid Khataee
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, 1053, Hungary.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Hiraiwa T. Dynamic Self-Organization of Idealized Migrating Cells by Contact Communication. PHYSICAL REVIEW LETTERS 2020; 125:268104. [PMID: 33449791 DOI: 10.1103/physrevlett.125.268104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
This Letter investigates what forms of cellular dynamic self-organization are caused through intercellular contact communication based on a theoretical model in which migrating cells perform contact following and contact inhibition and attraction of locomotion. Tuning those strengths causes varieties of dynamic patterns. This further includes a novel form of collective migration, snakelike dynamic assembly. Scrutinizing this pattern reveals that cells in this state can accurately respond to an external directional cue but have no spontaneous global polar order.
Collapse
Affiliation(s)
- Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, 117411, Singapore and Universal Biology Institute, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Hayakawa M, Hiraiwa T, Wada Y, Kuwayama H, Shibata T. Polar pattern formation induced by contact following locomotion in a multicellular system. eLife 2020; 9:53609. [PMID: 32352381 PMCID: PMC7213982 DOI: 10.7554/elife.53609] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
Biophysical mechanisms underlying collective cell migration of eukaryotic cells have been studied extensively in recent years. One mechanism that induces cells to correlate their motions is contact inhibition of locomotion, by which cells migrating away from the contact site. Here, we report that tail-following behavior at the contact site, termed contact following locomotion (CFL), can induce a non-trivial collective behavior in migrating cells. We show the emergence of a traveling band showing polar order in a mutant Dictyostelium cell that lacks chemotactic activity. We find that CFL is the cell-cell interaction underlying this phenomenon, enabling a theoretical description of how this traveling band forms. We further show that the polar order phase consists of subpopulations that exhibit characteristic transversal motions with respect to the direction of band propagation. These findings describe a novel mechanism of collective cell migration involving cell-cell interactions capable of inducing traveling band with polar order.
Collapse
Affiliation(s)
- Masayuki Hayakawa
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Universal Biology Institute, University of Tokyo, Tokyo, Japan
| | - Yuko Wada
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hidekazu Kuwayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Ibaraki, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
8
|
Tanida S, Furuta K, Nishikawa K, Hiraiwa T, Kojima H, Oiwa K, Sano M. Gliding filament system giving both global orientational order and clusters in collective motion. Phys Rev E 2020; 101:032607. [PMID: 32289972 DOI: 10.1103/physreve.101.032607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Emergence and collapse of coherent motions of self-propelled particles are affected more by particle motions and interactions than by their material or biological details. In the reconstructed systems of biofilaments and molecular motors, several types of collective motion including a global-order pattern emerge due to the alignment interaction. Meanwhile, earlier studies show that the alignment interaction of a binary collision of biofilaments is too weak to form the global order. The multiple collision is revealed to be important to achieve global order, but it is still unclear what kind of multifilament collision is actually involved. In this study, we demonstrate that not only alignment but also crossing of two filaments is essential to produce an effective multiple-particle interaction and the global order. We design the reconstructed system of biofilaments and molecular motors to vary a probability of the crossing of biofilaments on a collision and thus control the effect of volume exclusion. In this system, biofilaments glide along their polar strands on the turf of molecular motors and can align themselves nematically when they collide with each other. Our experiments show the counterintuitive result, in which the global order is achieved only when the crossing is allowed. When the crossing is prohibited, the cluster pattern emerges instead. We also investigate the numerical model in which we can change the strength of the volume exclusion effect and find that the global orientational order and clusters emerge with weak and strong volume exclusion effects, respectively. With those results and simple theory, we conclude that not only alignment but also finite crossing probability are necessary for the effective multiple-particles interaction forming the global order. Additionally, we describe the chiral symmetry breaking of a microtubule motion which causes a rotation of global alignment.
Collapse
Affiliation(s)
- Sakurako Tanida
- Department of Physics, Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Ken'ya Furuta
- National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Japan
| | - Kaori Nishikawa
- Department of Physics, Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuya Hiraiwa
- Department of Physics, Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hiroaki Kojima
- National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Japan
| | - Kazuhiro Oiwa
- National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Japan
| | - Masaki Sano
- Department of Physics, Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|