1
|
Del Grosso NF, Lombardo FC, Mazzitelli FD, Villar PI. Adiabatic Shortcuts Completion in Quantum Field Theory: Annihilation of Created Particles. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1249. [PMID: 37761548 PMCID: PMC10529776 DOI: 10.3390/e25091249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023]
Abstract
Shortcuts to adiabaticity (STA) are relevant in the context of quantum systems, particularly regarding their control when they are subjected to time-dependent external conditions. In this paper, we investigate the completion of a nonadiabatic evolution into a shortcut to adiabaticity for a quantum field confined within a one-dimensional cavity containing two movable mirrors. Expanding upon our prior research, we characterize the field's state using two Moore functions that enables us to apply reverse engineering techniques in constructing the STA. Regardless of the initial evolution, we achieve a smooth extension of the Moore functions that implements the STA. This extension facilitates the computation of the mirrors' trajectories based on the aforementioned functions. Additionally, we draw attention to the existence of a comparable problem within nonrelativistic quantum mechanics.
Collapse
Affiliation(s)
- Nicolás F. Del Grosso
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA), CONICET—Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Fernando C. Lombardo
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA), CONICET—Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Francisco D. Mazzitelli
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica, Bariloche 8400, Argentina;
| | - Paula I. Villar
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA), CONICET—Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
2
|
Guéry-Odelin D, Jarzynski C, Plata CA, Prados A, Trizac E. Driving rapidly while remaining in control: classical shortcuts from Hamiltonian to stochastic dynamics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:035902. [PMID: 36535018 DOI: 10.1088/1361-6633/acacad] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Stochastic thermodynamics lays down a broad framework to revisit the venerable concepts of heat, work and entropy production for individual stochastic trajectories of mesoscopic systems. Remarkably, this approach, relying on stochastic equations of motion, introduces time into the description of thermodynamic processes-which opens the way to fine control them. As a result, the field of finite-time thermodynamics of mesoscopic systems has blossomed. In this article, after introducing a few concepts of control for isolated mechanical systems evolving according to deterministic equations of motion, we review the different strategies that have been developed to realize finite-time state-to-state transformations in both over and underdamped regimes, by the proper design of time-dependent control parameters/driving. The systems under study are stochastic, epitomized by a Brownian object immersed in a fluid; they are thus strongly coupled to their environment playing the role of a reservoir. Interestingly, a few of those methods (inverse engineering, counterdiabatic driving, fast-forward) are directly inspired by their counterpart in quantum control. The review also analyzes the control through reservoir engineering. Besides the reachability of a given target state from a known initial state, the question of the optimal path is discussed. Optimality is here defined with respect to a cost function, a subject intimately related to the field of information thermodynamics and the question of speed limit. Another natural extension discussed deals with the connection between arbitrary states or non-equilibrium steady states. This field of control in stochastic thermodynamics enjoys a wealth of applications, ranging from optimal mesoscopic heat engines to population control in biological systems.
Collapse
Affiliation(s)
- David Guéry-Odelin
- Laboratoire Collisions, Agrégats, Réactivité, IRSAMC, Université de Toulouse, CNRS, Toulouse, France
| | - Christopher Jarzynski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States of America
- Department of Physics, University of Maryland, College Park, MD, United States of America
| | - Carlos A Plata
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - Antonio Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | | |
Collapse
|
3
|
B S R, Mukherjee V, Divakaran U. Bath Engineering Enhanced Quantum Critical Engines. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1458. [PMID: 37420478 DOI: 10.3390/e24101458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 07/09/2023]
Abstract
Driving a quantum system across quantum critical points leads to non-adiabatic excitations in the system. This in turn may adversely affect the functioning of a quantum machine which uses a quantum critical substance as its working medium. Here we propose a bath-engineered quantum engine (BEQE), in which we use the Kibble-Zurek mechanism and critical scaling laws to formulate a protocol for enhancing the performance of finite-time quantum engines operating close to quantum phase transitions. In the case of free fermionic systems, BEQE enables finite-time engines to outperform engines operating in the presence of shortcuts to adiabaticity, and even infinite-time engines under suitable conditions, thus showing the remarkable advantages offered by this technique. Open questions remain regarding the use of BEQE based on non-integrable models.
Collapse
Affiliation(s)
- Revathy B S
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 678557, India
| | - Victor Mukherjee
- Department of Physical Sciences, IISER Berhampur, Berhampur 760010, India
| | - Uma Divakaran
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 678557, India
| |
Collapse
|
4
|
Mukherjee V, Divakaran U. Many-body quantum thermal machines. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:454001. [PMID: 34359061 DOI: 10.1088/1361-648x/ac1b60] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Thermodynamics of quantum systems and quantum thermal machines are rapidly developing fields, which have already delivered several promising results, as well as raised many intriguing questions. Many-body quantum machines present new opportunities stemming from many-body effects. At the same time, they pose new challenges related to many-body physics. In this short review we discuss some of the recent developments on technologies based on many-body quantum systems. We mainly focus on many-body effects in quantum thermal machines. We also briefly address the role played by many-body systems in the development of quantum batteries and quantum probes.
Collapse
Affiliation(s)
- Victor Mukherjee
- Department of Physical Sciences, IISER Berhampur, Berhampur 760010, India
| | - Uma Divakaran
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad, 678557, India
| |
Collapse
|
5
|
Abstract
By harnessing quantum phenomena, quantum devices have the potential to outperform their classical counterparts. Here, we examine using wave function symmetry as a resource to enhance the performance of a quantum Otto engine. Previous work has shown that a bosonic working medium can yield better performance than a fermionic medium. We expand upon this work by incorporating a singular interaction that allows the effective symmetry to be tuned between the bosonic and fermionic limits. In this framework, the particles can be treated as anyons subject to Haldane’s generalized exclusion statistics. Solving the dynamics analytically using the framework of “statistical anyons”, we explore the interplay between interparticle interactions and wave function symmetry on engine performance.
Collapse
|
6
|
Sgroi P, Palma GM, Paternostro M. Reinforcement Learning Approach to Nonequilibrium Quantum Thermodynamics. PHYSICAL REVIEW LETTERS 2021; 126:020601. [PMID: 33512184 DOI: 10.1103/physrevlett.126.020601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
We use a reinforcement learning approach to reduce entropy production in a closed quantum system brought out of equilibrium. Our strategy makes use of an external control Hamiltonian and a policy gradient technique. Our approach bears no dependence on the quantitative tool chosen to characterize the degree of thermodynamic irreversibility induced by the dynamical process being considered, requires little knowledge of the dynamics itself, and does not need the tracking of the quantum state of the system during the evolution, thus embodying an experimentally nondemanding approach to the control of nonequilibrium quantum thermodynamics. We successfully apply our methods to the case of single- and two-particle systems subjected to time-dependent driving potentials.
Collapse
Affiliation(s)
- Pierpaolo Sgroi
- Dipartimento di Fisica e Chimica-Emilio Segré, Università degli Studi di Palermo, via Archirafi 36, I-90123 Palermo, Italy
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - G Massimo Palma
- Dipartimento di Fisica e Chimica-Emilio Segré, Università degli Studi di Palermo, via Archirafi 36, I-90123 Palermo, Italy
- NEST, Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy
| | - Mauro Paternostro
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
7
|
Dann R, Kosloff R, Salamon P. Quantum Finite-Time Thermodynamics: Insight from a Single Qubit Engine. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1255. [PMID: 33287023 PMCID: PMC7712823 DOI: 10.3390/e22111255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 02/01/2023]
Abstract
Incorporating time into thermodynamics allows for addressing the tradeoff between efficiency and power. A qubit engine serves as a toy model in order to study this tradeoff from first principles, based on the quantum theory of open systems. We study the quantum origin of irreversibility, originating from heat transport, quantum friction, and thermalization in the presence of external driving. We construct various finite-time engine cycles that are based on the Otto and Carnot templates. Our analysis highlights the role of coherence and the quantum origin of entropy production.
Collapse
Affiliation(s)
- Roie Dann
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Ronnie Kosloff
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Peter Salamon
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-7720, USA;
| |
Collapse
|
8
|
Wang Q. Performance of quantum heat engines under the influence of long-range interactions. Phys Rev E 2020; 102:012138. [PMID: 32794960 DOI: 10.1103/physreve.102.012138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/29/2020] [Indexed: 11/07/2022]
Abstract
We examine a quantum heat engine with an interacting many-body working medium consisting of the long-range Kitaev chain to explore the role of long-range interactions in the performance of the quantum engine. By analytically studying two types of thermodynamic cycles, namely, the Otto cycle and Stirling cycle, we demonstrate that the work output and efficiency of a long-range interacting heat engine can be boosted by the long-range interactions, in comparison to the short-range counterpart. We further show that in the Otto cycle there exists an optimal condition for which the maximum enhancement in work output and efficiency can be achieved simultaneously by the long-range interactions. But, for the Stirling cycle, the condition which can give the maximum enhancement in work output does not lead to the maximum enhancement in efficiency. We also investigate how the parameter regimes under which the engine performance is enhanced by the long-range interactions evolve with a decrease in the range of interactions.
Collapse
Affiliation(s)
- Qian Wang
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China and CAMTP-Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, SI-2000 Maribor, Slovenia
| |
Collapse
|
9
|
Abah O, Puebla R, Paternostro M. Quantum State Engineering by Shortcuts to Adiabaticity in Interacting Spin-Boson Systems. PHYSICAL REVIEW LETTERS 2020; 124:180401. [PMID: 32441978 DOI: 10.1103/physrevlett.124.180401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
We present a fast and robust framework to prepare nonclassical states of a bosonic mode exploiting a coherent exchange of excitations with a two-level system ruled by a Jaynes-Cummings interaction mechanism. Our protocol, which is built on shortcuts to adiabaticity, allows for the generation of arbitrary Fock states of the bosonic mode, as well as coherent quantum superpositions of a Schrödinger cat-like form. In addition, we show how to obtain a class of photon-shifted states where the vacuum population is removed, a result akin to photon addition, but displaying more nonclassicality than standard photon-added states. Owing to the ubiquity of the spin-boson interaction that we consider, our proposal is amenable for implementations in state-of-the-art experiments.
Collapse
Affiliation(s)
- Obinna Abah
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Ricardo Puebla
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Mauro Paternostro
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
10
|
Lee S, Ha M, Park JM, Jeong H. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction. Phys Rev E 2020; 101:022127. [PMID: 32168587 DOI: 10.1103/physreve.101.022127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
In finite-time quantum heat engines, some work is consumed to drive a working fluid accompanying coherence, which is called "friction." To understand the role of friction in quantum thermodynamics, we present a couple of finite-time quantum Otto cycles with two different baths: Agarwal versus Lindbladian. We solve them exactly and compare the performance of the Agarwal engine with that of the Lindbladian engine. In particular, we find remarkable and counterintuitive results that the performance of the Agarwal engine due to friction can be much higher than that in the quasistatic limit with the Otto efficiency, and the power of the Lindbladian engine can be nonzero in the short-time limit. Based on additional numerical calculations of these outcomes, we discuss possible origins of such differences between two engines and reveal them. Our results imply that, even with an equilibrium bath, a nonequilibrium working fluid brings on the higher performance than what an equilibrium working fluid does.
Collapse
Affiliation(s)
- Sangyun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34051, Korea
| | - Meesoon Ha
- Department of Physics Education, Chosun University, Gwangju 61452, Korea
| | - Jong-Min Park
- School of Physics, Korea Institute for Advanced Study, Seoul, 02455, Korea
| | - Hawoong Jeong
- Department of Physics and Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
11
|
Myers NM, Deffner S. Bosons outperform fermions: The thermodynamic advantage of symmetry. Phys Rev E 2020; 101:012110. [PMID: 32069543 DOI: 10.1103/physreve.101.012110] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 06/10/2023]
Abstract
We examine a quantum Otto engine with a harmonic working medium consisting of two particles to explore the use of wave function symmetry as an accessible resource. It is shown that the bosonic system displays enhanced performance when compared to two independent single particle engines, while the fermionic system displays reduced performance. To this end, we explore the trade-off between efficiency and power output and the parameter regimes under which the system functions as engine, refrigerator, or heater. Remarkably, the bosonic system operates under a wider parameter space both when operating as an engine and as a refrigerator.
Collapse
Affiliation(s)
- Nathan M Myers
- Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | - Sebastian Deffner
- Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| |
Collapse
|
12
|
Guff T, Daryanoosh S, Baragiola BQ, Gilchrist A. Power and efficiency of a thermal engine with a coherent bath. Phys Rev E 2019; 100:032129. [PMID: 31639983 DOI: 10.1103/physreve.100.032129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 06/10/2023]
Abstract
We consider a quantum engine driven by repeated weak interactions with a heat bath of identical three-level atoms. This model was first introduced by Scully et al. [Science 299, 862 (2003)SCIEAS0036-807510.1126/science.1078955], who showed that coherence between the energy-degenerate ground states serves as a thermodynamic resource that allows operation of a thermal cycle with a coherence-dependent thermalization temperature. We consider a similar engine out of the quasistatic limit and find that the ground-state coherence also determines the rate of thermalization, therefore increasing the output power and the engine efficiency only when the thermalization temperature is reduced; revealing a more nuanced perspective of coherence as a resource. This allows us to optimize the output power by adjusting the coherence and relative stroke durations.
Collapse
Affiliation(s)
- Thomas Guff
- Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney NSW 2113, Australia
| | - Shakib Daryanoosh
- Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney NSW 2113, Australia
| | - Ben Q Baragiola
- Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney NSW 2113, Australia
| | - Alexei Gilchrist
- Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney NSW 2113, Australia
| |
Collapse
|
13
|
Çakmak B, Müstecaplıoğlu ÖE. Spin quantum heat engines with shortcuts to adiabaticity. Phys Rev E 2019; 99:032108. [PMID: 30999442 DOI: 10.1103/physreve.99.032108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Indexed: 06/09/2023]
Abstract
We consider a finite-time quantum Otto cycle with single- and two spin-1/2 systems as its working medium. To mimic adiabatic dynamics at a finite time, we employ a shortcut-to-adiabaticity technique and evaluate the performance of the engine including the cost of the shortcut. We compare our results with the true adiabatic and nonadiabatic performances of the same cycle. Our findings indicate that the use of the shortcut-to-adiabaticity scheme significantly enhances the performance of the quantum Otto engine as compared to its adiabatic and nonadiabatic counterparts for different figures of merit.
Collapse
Affiliation(s)
- Barış Çakmak
- Department of Physics, Koç University, İstanbul, Sarıyer 34450, Turkey
- College of Engineering and Natural Sciences, Bahçeşehir University, Beşiktaş, Istanbul 34353, Turkey
| | | |
Collapse
|