Head D. Viscoelastic Scaling Regimes for Marginally Rigid Fractal Spring Networks.
PHYSICAL REVIEW LETTERS 2022;
129:018001. [PMID:
35841566 DOI:
10.1103/physrevlett.129.018001]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/06/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
A family of marginally rigid (isostatic) spring networks with fractal structure up to a controllable length was devised, and the viscoelastic spectra G^{*}(ω) calculated. Two nontrivial scaling regimes were observed, (i) G^{'}≈G^{''}∝ω^{Δ} at low frequencies, consistent with Δ=1/2, and (ii) G^{'}∝G^{''}∝ω^{Δ^{'}} for intermediate frequencies corresponding to fractal structure, consistent with a theoretical prediction Δ^{'}=(ln3-ln2)/(ln3+ln2). The crossover between these two regimes occurred at lower frequencies for larger fractals in a manner suggesting diffusivelike dispersion. Solid gels generated by introducing internal stresses exhibited similar behavior above a low-frequency cutoff, indicating the relevance of these findings to real-world applications.
Collapse