1
|
Huang F, Noël R, Berg P, Hosseini SA. Simulation of the FDA nozzle benchmark: A lattice Boltzmann study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106863. [PMID: 35617810 DOI: 10.1016/j.cmpb.2022.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Contrary to flows in small intracranial vessels, many blood flow configurations such as those found in aortic vessels and aneurysms involve larger Reynolds numbers and, therefore, transitional or turbulent conditions. Dealing with such systems require both robust and efficient numerical methods. METHODS We assess here the performance of a lattice Boltzmann solver with full Hermite expansion of the equilibrium and central Hermite moments collision operator at higher Reynolds numbers, especially for under-resolved simulations. To that end the food and drug administration's benchmark nozzle is considered at three different Reynolds numbers covering all regimes: (1) laminar at a Reynolds number of 500, (2) transitional at a Reynolds number of 3500, and (3) low-level turbulence at a Reynolds number of 6500. RESULTS The lattice Boltzmann results are compared with previously published inter-laboratory experimental data obtained by particle image velocimetry. Our results show good agreement with the experimental measurements throughout the nozzle, demonstrating the good performance of the solver even in under-resolved simulations. CONCLUSION In this manner, fast but sufficiently accurate numerical predictions can be achieved for flow configurations of practical interest regarding medical applications.
Collapse
Affiliation(s)
- Feng Huang
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", Magdeburg D-39106, Germany
| | - Romain Noël
- Univ. Gustave Eiffel, Inria, Cosys/SII, I4S, Bouguenais F-44344, France
| | - Philipp Berg
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", Magdeburg D-39106, Germany; Research Campus STIMULATE, University of Magdeburg "Otto von Guericke", Magdeburg, D-39106, Germany
| | - Seyed Ali Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", Magdeburg D-39106, Germany; Department of Mechanical and Process Engineering, ETH Zürich, Zürich 8092, Switzerland.
| |
Collapse
|
2
|
Ilyin O. Discrete-velocity Boltzmann model: Regularization and linear stability. Phys Rev E 2022; 105:045312. [PMID: 35590549 DOI: 10.1103/physreve.105.045312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
A discrete-velocity Boltzmann model for a nine-velocity lattice is considered. Compared to the conventional lattice Boltzmann (LB) schemes the collisions for the model are defined explicitly. Space and time discretization of the model is based on the collide and stream method; in addition, the regularization of the collision term is proposed. It is demonstrated that the regularized model can be represented as a two-relaxation-time LB model of a special type. The scheme is compared to the Onsager regularized (a specific filtered Galilean invariant model) and recursively regularized LB equations in terms of stability and dissipation properties, and linear stability analysis is performed. Several numerical experiments are carried out: double shear layer, lid-driven cavity flow, and propagation of acoustic and shear waves are considered for different grid resolutions, Mach and Reynolds numbers. It is shown that free parameters in the model corresponding to collision cross sections can be adjusted in such a way that the dissipation and stability properties can be controlled.
Collapse
Affiliation(s)
- Oleg Ilyin
- Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, Vavilova - 44,2, Moscow 119333, Russia
| |
Collapse
|
3
|
Hosseini SA, Darabiha N, Thévenin D. Compressibility in lattice Boltzmann on standard stencils: effects of deviation from reference temperature. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190399. [PMID: 32564724 PMCID: PMC7333953 DOI: 10.1098/rsta.2019.0399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2020] [Indexed: 05/05/2023]
Abstract
With growing interest in the simulation of compressible flows using the lattice Boltzmann (LB) method, a number of different approaches have been developed. These methods can be classified as pertaining to one of two major categories: (i) solvers relying on high-order stencils recovering the Navier-Stokes-Fourier equations, and (ii) approaches relying on classical first-neighbour stencils for the compressible Navier-Stokes equations coupled to an additional (LB-based or classical) solver for the energy balance equation. In most cases, the latter relies on a thermal Hermite expansion of the continuous equilibrium distribution function (EDF) to allow for compressibility. Even though recovering the correct equation of state at the Euler level, it has been observed that deviations of local flow temperature from the reference can result in instabilities and/or over-dissipation. The aim of the present study is to evaluate the stability domain of different EDFs, different collision models, with and without the correction terms for the third-order moments. The study is first based on a linear von Neumann analysis. The correction term for the space- and time-discretized equations is derived via a Chapman-Enskog analysis and further corroborated through spectral dispersion-dissipation curves. Finally, a number of numerical simulations are performed to illustrate the proposed theoretical study. This article is part of the theme issue 'Fluid dynamics, soft matter and complex systems: recent results and new methods'.
Collapse
Affiliation(s)
- S. A. Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg ‘Otto von Guericke’, 39106 Magdeburg, Germany
- Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192 Gif-sur-Yvette Cedex, France
- International Max Planck Research School (IMPRS) for Advanced Methods in Process and Systems Engineering, Magdeburg, Germany
| | - N. Darabiha
- Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192 Gif-sur-Yvette Cedex, France
| | - D. Thévenin
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg ‘Otto von Guericke’, 39106 Magdeburg, Germany
| |
Collapse
|
4
|
Hosseini SA, Coreixas C, Darabiha N, Thévenin D. Extensive analysis of the lattice Boltzmann method on shifted stencils. Phys Rev E 2020; 100:063301. [PMID: 31962484 DOI: 10.1103/physreve.100.063301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Indexed: 11/07/2022]
Abstract
Standard lattice Boltzmann methods (LBMs) are based on a symmetric discretization of the phase space, which amounts to study the evolution of particle distribution functions (PDFs) in a reference frame at rest. This choice induces a number of limitations when the simulated flow speed gets closer to the sound speed, such as velocity-dependent transport coefficients. The latter issue is usually referred to as a Galilean invariance defect. To restore the Galilean invariance of LBMs, it was proposed to study the evolution of PDFs in a comoving reference frame by relying on asymmetric shifted lattices [N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. Lett. 117, 010604 (2016)].PRLTAO0031-900710.1103/PhysRevLett.117.010604 From the numerical viewpoint, this corresponds to overcoming the rather restrictive Courant-Friedrichs-Lewy conditions on standard LBMs and modeling compressible flows while keeping memory consumption and processing costs to a minimum (therefore using the standard first-neighbor stencils). In the present work systematic physical error evaluations and stability analyses are conducted for different discrete equilibrium distribution functions (EDFs) and collision models. Thanks to them, it is possible to (1) better understand the effect of this solution on both physics and stability, (2) assess its viability as a way to extend the validity range of LBMs, and (3) quantify the importance of the reference state as compared to other parameters such as the equilibrium state and equilibration path. The results clearly show that, in theory, the concept of shifted lattices allows the scheme to deal with arbitrarily high values of the nondimensional velocity. Furthermore, just like the zero-Mach flow for the standard stencils, it is observed that setting the shift velocity to the fluid velocity results in optimal physical and numerical properties. In addition, a detailed analysis of the obtained results shows that the properties of different collision models and EDFs remain unchanged under the shift of stencil. In other words, by introducing a velocity shift in the stencil, the optimal operating point, in terms of physics and numerics, will also be shifted by the same vector regardless of the EDF or collision model considered. Eventually, while limited to the D2Q9 stencil with the nine possible first-neighbor shifts, the present study and corresponding conclusions can be extended to other stencils and velocity shifts in a straightforward manner.
Collapse
Affiliation(s)
- S A Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke," D-39106 Magdeburg, Germany.,Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 91192 Gif-sur-Yvette Cedex, France.,International Max Planck Research School (IMPRS) for Advanced Methods in Process and Systems Engineering, Magdeburg, Germany
| | - C Coreixas
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | - N Darabiha
- Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 91192 Gif-sur-Yvette Cedex, France
| | - D Thévenin
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke," D-39106 Magdeburg, Germany
| |
Collapse
|
5
|
Hosseini SA, Coreixas C, Darabiha N, Thévenin D. Stability of the lattice kinetic scheme and choice of the free relaxation parameter. Phys Rev E 2019; 99:063305. [PMID: 31330723 DOI: 10.1103/physreve.99.063305] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 11/07/2022]
Abstract
The lattice kinetic scheme (LKS), a modified version of the classical single relaxation time (SRT) lattice Boltzmann method, was initially developed as a suitable numerical approach for non-Newtonian flow simulations and a way to reduce memory consumption of the original SRT approach. The better performances observed for non-Newtonian flows are mainly due to the additional degree of freedom allowing an independent control over the relaxation of higher-order moments, independently from the fluid viscosity. Although widely applied to fluid flow simulations, no theoretical analysis of LKS has been performed. The present work focuses on a systematic von Neumann analysis of the linearized collision operator. Thanks to this analysis, the effects of the modified collision operator on the stability domain and spectral behavior of the scheme are clarified. Results obtained in this study show that correct choices of the "second relaxation coefficient" lead, to a certain extent, to a more consistent dispersion and dissipation for large values of the first relaxation coefficient. Furthermore, appropriate values of this parameter can lead to a larger linear stability domain. At moderate and low values of viscosity, larger values of the free parameter are observed to increase dissipation of kinetic modes, while leaving the acoustic modes untouched and having a less pronounced effect on the convective mode. This increased dissipation leads in general to less pronounced sources of nonlinear instability, thus improving the stability of the LKS.
Collapse
Affiliation(s)
- S A Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke," D-39106 Magdeburg, Germany.,Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192, Gif-sur-Yvette Cedex, France.,International Max Planck Research School (IMPRS) for Advanced Methods in Process and Systems Engineering, Magdeburg, Germany
| | - C Coreixas
- Department of Computer Science, University of Geneva, Geneva, Switzerland
| | - N Darabiha
- Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192, Gif-sur-Yvette Cedex, France
| | - D Thévenin
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke," D-39106 Magdeburg, Germany
| |
Collapse
|