1
|
Singh A, Singh Y. Structure ordering and glass transition in size-asymmetric ternary mixtures of hard spheres: Variation from fragile to strong glasses. Phys Rev E 2023; 107:014119. [PMID: 36797956 DOI: 10.1103/physreve.107.014119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
We investigate the structure and activated dynamics of a binary mixture of colloidal particles dispersed in a solvent of much smaller-sized particles. The solvent degrees of freedom are traced out from the grand partition function of the colloid-solvent mixture which reduces the system from ternary to effective binary mixture of colloidal particles. In the effective binary mixture colloidal particles interact via effective potential that consists of bare potential plus the solvent-induced interaction. Expressions for the effective potentials and pair correlation functions are derived. We used the result of pair correlation functions to determine the number of particles in a cooperatively reorganizing cluster (CRC) in which localized particles form "long-lived" nonchemical bonds with the central particle. For an event of relaxation to take place these bonds have to reorganize irreversibly, the energy involved in the processes is the effective activation energy of relaxation. Results are reported for hard sphere colloidal particles dispersed in a solvent of hard sphere particles. Our results show that the concentration of solvent can be used as a control parameter to fine-tune the microscopic structural ordering and the size of CRC that governs the glassy dynamics. We show that a small variation in the concentration of solvent creates a bigger change in the kinetic fragility which highlights a wide variation in behavior, ranging from fragile to strong glasses. We conclude that the CRC which is determined from the static pair correlation function and the fluctuations embedded in the system is probably the sole player in the physics of glass transition.
Collapse
Affiliation(s)
- Ankit Singh
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | - Yashwant Singh
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
2
|
Chauhan K, Singh A. Delayed collapse transitions in a pinned polymer system. Phys Rev E 2022; 105:064505. [PMID: 35854509 DOI: 10.1103/physreve.105.064505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/05/2022] [Indexed: 11/07/2022]
Abstract
Employing Langevin dynamics simulations, we investigated the kinetics of the collapse transition for a polymer of length N when a particular monomer at a position 1≤X≤N is pinned. The results are compared with the kinetics of a free polymer. The equilibrium θ-point separating the coil from the globule phase is located by a crossover in 〈R_{g}^{2}〉/N plots of different chain lengths. Our simulation supports a three-stage mechanism for free and pinned polymer collapse: the formation of pearls, the coarsening of pearls, and the formation of a compact globule. Pinning the central monomer has negligible effects on the kinetics as it does not break the symmetry. However, pinning a monomer elsewhere causes the process to be delayed by a constant factor ϕ_{X} depending linearly upon X. The total collapse time scales with N as τ_{c}∼ϕ_{X}N^{1.60±0.03}, which implies τ_{c} is maximum when an end monomer is pinned (X=1 or N), while when pinning the central monomer (X=N/2) it is minimum and identical to that of a free polymer. The average cluster size N_{c}(t) grows in time as t^{z}, where z=1.00±0.04 for a free particle, whereas we identify two time regimes separated by a plateau for pinned polymers. At longer times, z=1.00±0.04, while it deviates in early time regimes significantly, depending on the value of X.
Collapse
Affiliation(s)
- Keerti Chauhan
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | - Ankit Singh
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Emran KM, Omar IMA, Arab ST, Ouerfelli N. On the pseudo-hyperbolic behavior of charge transfer resistance-temperature dependence in corrosion behavior of Nickel based glass alloy. Sci Rep 2022; 12:6432. [PMID: 35440686 PMCID: PMC9019006 DOI: 10.1038/s41598-022-10462-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
Temperature plays an important role in promoting the corrosion of metals. The Arrhenius plot can interpret the corrosion rate-temperature dependence, where the Arrhenius behavior gives a geometrical meaning and makes explicit a positive or negative linear dependence of charge transitivity and temperature. In addition, according to the Arrhenius interpretation, it represents the energy that the molecule in the initial state of the process must acquire before it can take part in the reaction, whether it is a physical, or a chemical process. Taking into account the deviation from the linearity, we have extended the Arrhenius-type expression by one term in 1/T2 and we have given some physical meaning to the new related coefficients for which it is found that they depend closely on the number of acid hydrogen atoms in the polyacid for the corrosion and passivation of the Nickel based metallic glass alloy of the composition Ni82.3Cr7Fe3Si4.5B3.2. Moreover, we can consider that the deviation to the Arrhenius linear behavior as a super-Arrhenius behavior In addition, a mathematical analysis of the trend of experimental scatter points of the charge transfer resistance with temperature permits us to reveal an interesting homographic behavior which leads us to suggest an original empirical model with only two optimal adjustable parameters, as well as a new pseudo-power dependence of the number of hydrogen atoms in the polyacid.
Collapse
Affiliation(s)
- Khadijah M Emran
- Chemistry Department, College of Science, Taibah University, Al-Madinah, Saudi Arabia.
| | - Inam M A Omar
- Chemistry Department, College of Science, Taibah University, Al-Madinah, Saudi Arabia
| | - Sanaa T Arab
- Chemistry Department, Faculty of Sciences, Al-Faisaliah, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noureddine Ouerfelli
- Institut Supérieur des Technologies Médicales de Tunis, LR13SE07, Laboratoire de Biophysique et Technologies Médicales, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
4
|
Singh A, Singh Y. How attractive and repulsive interactions affect structure ordering and dynamics of glass-forming liquids. Phys Rev E 2021; 103:052105. [PMID: 34134190 DOI: 10.1103/physreve.103.052105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/15/2021] [Indexed: 11/07/2022]
Abstract
The theory developed in our previous papers [Phys. Rev. E 99, 030101(R) (2019)10.1103/PhysRevE.99.030101; Phys. Rev. E 103, 032611 (2021)10.1103/PhysRevE.103.032611] is applied in this paper to investigate the dependence of slowing down of dynamics of glass-forming liquids on the attractive and repulsive parts of intermolecular interactions. Through an extensive comparison of the behavior of a Lennard-Jones glass-forming liquid and that of its WCA reduction to a model with truncated pair potential without attractive tail, we demonstrate why the two systems exhibit very different dynamics despite having nearly identical pair correlation functions. In particular, we show that local structures characterized by the number of mobile and immobile particles around a central particle markedly differ in the two systems at densities and temperatures where their dynamics show large difference and nearly identical where dynamics nearly overlap. We also show how the parameter ψ(T) that measures the role of fluctuations embedded in the system on size of the cooperatively reorganizing cluster (CRC) and the crossover temperature T_{a} depend on the intermolecular interactions. These parameters stemming from the intermolecular interactions characterize the temperature and density dependence of structural relaxation time τ_{α}. The quantitative and qualitative agreements found with simulation results for the two systems suggest that our theory brings out the underlying features that determine the dynamics of glass-forming liquids.
Collapse
Affiliation(s)
- Ankit Singh
- Department of Physics, Banaras Hindu University, Varanasi-221 005, India
| | - Yashwant Singh
- Department of Physics, Banaras Hindu University, Varanasi-221 005, India
| |
Collapse
|
5
|
Bhatia S, Krishnamoorthy G, Udgaonkar JB. Resolving Site-Specific Heterogeneity of the Unfolded State under Folding Conditions. J Phys Chem Lett 2021; 12:3295-3302. [PMID: 33764778 DOI: 10.1021/acs.jpclett.1c00098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the properties of the unfolded state under folding conditions is of fundamental importance for gaining mechanistic insight into folding as well as misfolding reactions. Toward achieving this objective, the folding reaction of a small protein, monellin, has been resolved structurally and temporally, with the use of the multisite time-resolved FRET methodology. The present study establishes that the initial polypeptide chain collapse is not only heterogeneous but also structurally asymmetric and nonuniform. The population-averaged size for the segments spanning parts of the β-sheet decreases much more than that for the α-helix. Multisite measurements enabled specific and nonspecific components of the initial chain collapse to be discerned. The expanded and compact intermediate subensembles have the properties of a nonspecifically collapsed (hence, random-coil-like) and specifically collapsed (hence, globular) polymer, respectively. During subsequent folding, both the subensembles underwent contraction to varying extents at the four monitored segments, which was close to gradual in nature. The expanded intermediate subensemble exhibited an additional very slow contraction, suggestive of the presence of non-native interactions that result in a higher effective viscosity slowing down intrachain motions under folding conditions.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560 065, India
- Indian Institute of Science Education and Research, Pune 411 008, India
| | | | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560 065, India
- Indian Institute of Science Education and Research, Pune 411 008, India
| |
Collapse
|
6
|
Singh A, Bhattacharyya SM, Singh Y. Emergence of cooperatively reorganizing cluster and super-Arrhenius dynamics of fragile supercooled liquids. Phys Rev E 2021; 103:032611. [PMID: 33862818 DOI: 10.1103/physreve.103.032611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we develop a theory to calculate the structural relaxation time τ_{α} of fragile supercooled liquids. Using the information of the configurational entropy and structure, we calculate the number of dynamically free, metastable, and stable neighbors around a central particle. In supercooled liquids, the cooperatively reorganizing clusters (CRCs) in which the stable neighbors form "stable" nonchemical bonds with the central particle emerge. For an event of relaxation to take place, these bonds have to reorganize irreversibly; the energy involved in the processes is the effective activation energy of relaxation. The theory brings forth a temperature T_{a} and a temperature-dependent parameter ψ(T) which characterize slowing down of dynamics on cooling. It is shown that the value of ψ(T) is equal to 1 for T>T_{a}, indicating that the underlying microscopic mechanism of relaxation is dominated by the entropy-driven processes, while for T<T_{a}, ψ(T) decreases on cooling, indicating the emergence of the energy-driven processes. This crossover of ψ(T) from high to low temperatures explains the crossover seen in τ_{α}. The dynamics of systems that may have similar static structure but very different dynamics can be understood in terms of ψ(T). We present results for the Kob-Anderson model for three densities and show that the calculated values of τ_{α} are in excellent agreement with simulation values for all densities. We also show that when ψ(T), τ_{α}, and other quantities are plotted as a function of T/T_{a} (or T_{a}/T), the data collapse on master curves.
Collapse
Affiliation(s)
- Ankit Singh
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | | | - Yashwant Singh
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
7
|
Singh J, Mustakim M, Anil Kumar AV. Super-Arrhenius diffusion in a binary colloidal mixture at low volume fraction: an effect of depletion interaction due to an asymmetric barrier. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:125101. [PMID: 33463528 DOI: 10.1088/1361-648x/abd428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report results from the molecular dynamics simulations of a binary colloidal mixture subjected to an external potential barrier along one of the spatial directions at low volume fraction, ϕ = 0.2. The variations in the asymmetry of the external potential barrier do not change the dynamics of the smaller particles, showing Arrhenius diffusion. However, the dynamics of the larger particles shows a crossover from sub-Arrhenius to super-Arrhenius diffusion with the asymmetry in the external potential at the low temperatures and low volume fraction. Super-Arrhenius diffusion is generally observed in the high density systems where the transient cages are present due to dense packing, e.g., supercooled liquids, jammed systems, diffusion through porous membranes, dynamics within the cellular environment, etc. This model can be applied to study the molecular transport across cell membranes, nano-, and micro-channels which are characterized by spatially asymmetric potentials.
Collapse
Affiliation(s)
- Jalim Singh
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni, Bhubaneswar 752050, India
| | | | | |
Collapse
|
8
|
Sha M, Ma X, Li N, Luo F, Zhu G, Fayer MD. Dynamical properties of a room temperature ionic liquid: Using molecular dynamics simulations to implement a dynamic ion cage model. J Chem Phys 2019; 151:154502. [PMID: 31640381 DOI: 10.1063/1.5126231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transport behavior of ionic liquids (ILs) is pivotal for a variety of applications, especially when ILs are used as electrolytes. Many aspects of the transport dynamics of ILs remain to be understood. Here, a common ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimNTf2), was studied with molecular dynamics simulations. The results show that BmimNTf2 displays typical structural relaxation, subdiffusive behavior, and a breakdown of the Stokes-Einstein diffusion relation as in glass-forming liquids. In addition, the simulations show that the translational dynamics, reorientation dynamics, and structural relaxation dynamics are well described by the Vogel-Fulcher-Tammann equation like fragile glass forming liquids. Building on previous work that employed ion cage models, it was found that the diffusion dynamics of the cations and anions were well described by a hopping process random walk where the step time is the ion cage lifetime obtained from the cage correlation function. Detailed analysis of the ion cage structures indicated that the electrostatic potential energy of the ion cage dominates the diffusion dynamics of the caged ion. The ion orientational relaxation dynamics showed that ion reorientation is a necessary step for ion cage restructuring. The dynamic ion cage model description of ion diffusion presented here may have implications for designing ILs to control their transport behavior.
Collapse
Affiliation(s)
- Maolin Sha
- Department of Physics and Materials Engineering, Hefei Normal University, Hefei 230061, China
| | - Xiaohang Ma
- Department of Physics and Materials Engineering, Hefei Normal University, Hefei 230061, China
| | - Na Li
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China
| | - Fabao Luo
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China
| | - Guanglai Zhu
- Institute of Atomic and Molecular Physics, Anhui Normal University, Wuhu 241000, China
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|