1
|
Parastesh F, Sriram S, Natiq H, Rajagopal K, Jafari S. An optimization-based algorithm for obtaining an optimal synchronizable network after link addition or reduction. CHAOS (WOODBURY, N.Y.) 2023; 33:033103. [PMID: 37003834 DOI: 10.1063/5.0134763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 06/19/2023]
Abstract
Achieving a network structure with optimal synchronization is essential in many applications. This paper proposes an optimization algorithm for constructing a network with optimal synchronization. The introduced algorithm is based on the eigenvalues of the connectivity matrix. The performance of the proposed algorithm is compared with random link addition and a method based on the eigenvector centrality. It is shown that the proposed algorithm has a better synchronization ability than the other methods and also the scale-free and small-world networks with the same number of nodes and links. The proposed algorithm can also be applied for link reduction while less disturbing its synchronization. The effectiveness of the algorithm is compared with four other link reduction methods. The results represent that the proposed algorithm is the most appropriate method for preserving synchronization.
Collapse
Affiliation(s)
- Fatemeh Parastesh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran
| | - Sridevi Sriram
- Centre for Computational Biology, Chennai Institute of Technology, Chennai 600069, Tamil Nadu, India
| | - Hayder Natiq
- Department of Computer Technology Engineering, College of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad 10001, Iraq
| | - Karthikeyan Rajagopal
- Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600069, Tamil Nadu, India
| | - Sajad Jafari
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran
| |
Collapse
|
2
|
Luan Y, Wu X, Liu B. Maximizing synchronizability of networks with community structure based on node similarity. CHAOS (WOODBURY, N.Y.) 2022; 32:083106. [PMID: 36049905 DOI: 10.1063/5.0092783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
In reality, numerous networks have a community structure characterized by dense intra-community connections and sparse inter-community connections. In this article, strategies are proposed to enhance synchronizability of such networks by rewiring a certain number of inter-community links, where the research scope is complete synchronization on undirected and diffusively coupled dynamic networks. First, we explore the effect of adding links between unconnected nodes with different similarity levels on network synchronizability and find that preferentially adding links between nodes with lower similarity can improve network synchronizability more than that with higher similarity, where node similarity is measured by our improved Asymmetric Katz (AKatz) and Asymmetric Leicht-Holme-Newman (ALHNII) methods from the perspective of link prediction. Additional simulations demonstrate that the node similarity-based link-addition strategy is more effective in enhancing network synchronizability than the node centrality-based methods. Furthermore, we apply the node similarity-based link-addition or deletion strategy as the valid criteria to the rewiring process of inter-community links and then propose a Node Similarity-Based Rewiring Optimization (NSBRO) algorithm, where the optimization process is realized by a modified simulated annealing technique. Simulations show that our proposed method performs better in optimizing synchronization of such networks compared with other centrality-based heuristic methods. Finally, simulations on the Rössler system indicate that the network structure optimized by the NSBRO algorithm also leads to better synchronizability of coupled oscillators.
Collapse
Affiliation(s)
- Yangyang Luan
- School of Mathematics and Statistics, Wuhan University, Hubei 430072, China
| | - Xiaoqun Wu
- School of Mathematics and Statistics, Wuhan University, Hubei 430072, China
| | - Binghong Liu
- School of Mathematics and Statistics, Wuhan University, Hubei 430072, China
| |
Collapse
|
3
|
Srivastava P, Nozari E, Kim JZ, Ju H, Zhou D, Becker C, Pasqualetti F, Pappas GJ, Bassett DS. Models of communication and control for brain networks: distinctions, convergence, and future outlook. Netw Neurosci 2020; 4:1122-1159. [PMID: 33195951 PMCID: PMC7655113 DOI: 10.1162/netn_a_00158] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Recent advances in computational models of signal propagation and routing in the human brain have underscored the critical role of white-matter structure. A complementary approach has utilized the framework of network control theory to better understand how white matter constrains the manner in which a region or set of regions can direct or control the activity of other regions. Despite the potential for both of these approaches to enhance our understanding of the role of network structure in brain function, little work has sought to understand the relations between them. Here, we seek to explicitly bridge computational models of communication and principles of network control in a conceptual review of the current literature. By drawing comparisons between communication and control models in terms of the level of abstraction, the dynamical complexity, the dependence on network attributes, and the interplay of multiple spatiotemporal scales, we highlight the convergence of and distinctions between the two frameworks. Based on the understanding of the intertwined nature of communication and control in human brain networks, this work provides an integrative perspective for the field and outlines exciting directions for future work.
Collapse
Affiliation(s)
- Pragya Srivastava
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Erfan Nozari
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
| | - Jason Z. Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Harang Ju
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Dale Zhou
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Cassiano Becker
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, CA USA
| | - George J. Pappas
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
| | - Danielle S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Santa Fe Institute, Santa Fe, NM USA
| |
Collapse
|