1
|
Guarnieri G, Eisert J, Miller HJD. Generalized Linear Response Theory for the Full Quantum Work Statistics. PHYSICAL REVIEW LETTERS 2024; 133:070405. [PMID: 39213553 DOI: 10.1103/physrevlett.133.070405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
We consider a quantum system driven out of equilibrium via a small Hamiltonian perturbation. Building on the paradigmatic framework of linear response theory (LRT), we derive an expression for the full generating function of the dissipated work. Remarkably, we find that all information about the distribution can be encoded in a single quantity, the standard relaxation function in LRT, thus opening up new ways to use phenomenological models to study nonequilibrium fluctuations in complex quantum systems. Our results establish a number of refined quantum thermodynamic constraints on the work statistics that apply to regimes of perturbative but arbitrarily fast protocols, and do not rely on assumptions such as slow driving or weak coupling. Finally, our approach uncovers a distinctly quantum signature in the work statistics that originates from underlying zero-point energy fluctuations. This causes an increased dispersion of the probability distribution at short driving times, a feature that can be probed in efforts to witness nonclassical effects in quantum thermodynamics.
Collapse
|
2
|
Onishchenko O, Guarnieri G, Rosillo-Rodes P, Pijn D, Hilder J, Poschinger UG, Perarnau-Llobet M, Eisert J, Schmidt-Kaler F. Probing coherent quantum thermodynamics using a trapped ion. Nat Commun 2024; 15:6974. [PMID: 39143048 PMCID: PMC11324868 DOI: 10.1038/s41467-024-51263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Quantum thermodynamics is aimed at grasping thermodynamic laws as they apply to thermal machines operating in the deep quantum regime, where coherence and entanglement are expected to matter. Despite substantial progress, however, it has remained difficult to develop thermal machines in which such quantum effects are observed to be of pivotal importance. In this work, we demonstrate the possibility to experimentally measure and benchmark a genuine quantum correction, induced by quantum friction, to the classical work fluctuation-dissipation relation. This is achieved by combining laser-induced coherent Hamiltonian rotations and energy measurements on a trapped ion. Our results demonstrate that recent developments in stochastic quantum thermodynamics can be used to benchmark and unambiguously distinguish genuine quantum coherent signatures generated along driving protocols, even in presence of experimental SPAM errors and, most importantly, beyond the regimes for which theoretical predictions are available (e.g., in slow driving).
Collapse
Affiliation(s)
- O Onishchenko
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - G Guarnieri
- Department of Physics and INFN - Sezione di Pavia, University of Pavia, Via Bassi 6, 27100, Pavia, Italy.
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195, Berlin, Germany.
| | - P Rosillo-Rodes
- Institute for Cross-Disciplinary Physics and Complex Systems, Campus Universitat de les Illes Balears, E-07122, Palma, Spain
| | - D Pijn
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - J Hilder
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - U G Poschinger
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - M Perarnau-Llobet
- Department of Applied Physics, University of Geneva, 1211, Geneva, Switzerland
| | - J Eisert
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195, Berlin, Germany
| | - F Schmidt-Kaler
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| |
Collapse
|
3
|
Beyer K, Uola R, Luoma K, Strunz WT. Joint measurability in nonequilibrium quantum thermodynamics. Phys Rev E 2022; 106:L022101. [PMID: 36109912 DOI: 10.1103/physreve.106.l022101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
In this Letter we investigate the concept of quantum work and its measurability from the viewpoint of quantum measurement theory. Very often, quantum work and fluctuation theorems are discussed in the framework of projective two-point measurement (TPM) schemes. According to a well-known no-go theorem, there is no work observable which satisfies both (i) an average work condition and (ii) the TPM statistics for diagonal input states. Such projective measurements represent a restrictive class among all possible measurements. It is desirable, both from a theoretical and experimental point of view, to extend the scheme to the general case including suitably designed unsharp measurements. This shifts the focus to the question of what information about work and its fluctuations one is able to extract from such generalized measurements. We show that the no-go theorem no longer holds if the observables in a TPM scheme are jointly measurable for any intermediate unitary evolution. We explicitly construct a model with unsharp energy measurements and derive bounds for the visibility that ensure joint measurability. In such an unsharp scenario a single work measurement apparatus can be constructed that allows us to determine the correct average work and to obtain free energy differences with the help of a Jarzynski equality.
Collapse
Affiliation(s)
- Konstantin Beyer
- Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Roope Uola
- Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
| | - Kimmo Luoma
- Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
- Turku Center for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland
| | - Walter T Strunz
- Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
4
|
Pires DP, Modi K, Céleri LC. Bounding generalized relative entropies: Nonasymptotic quantum speed limits. Phys Rev E 2021; 103:032105. [PMID: 33862799 DOI: 10.1103/physreve.103.032105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Information theory has become an increasingly important research field to better understand quantum mechanics. Noteworthy, it covers both foundational and applied perspectives, also offering a common technical language to study a variety of research areas. Remarkably, one of the key information-theoretic quantities is given by the relative entropy, which quantifies how difficult is to tell apart two probability distributions, or even two quantum states. Such a quantity rests at the core of fields like metrology, quantum thermodynamics, quantum communication, and quantum information. Given this broadness of applications, it is desirable to understand how this quantity changes under a quantum process. By considering a general unitary channel, we establish a bound on the generalized relative entropies (Rényi and Tsallis) between the output and the input of the channel. As an application of our bounds, we derive a family of quantum speed limits based on relative entropies. Possible connections between this family with thermodynamics, quantum coherence, asymmetry, and single-shot information theory are briefly discussed.
Collapse
Affiliation(s)
- Diego Paiva Pires
- International Institute of Physics and Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| | - Kavan Modi
- School of Physics & Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Lucas Chibebe Céleri
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- Institute of Physics, Federal University of Goiás, 74.690-900 Goiânia, Goiás, Brazil
| |
Collapse
|
5
|
Qiu T, Fei Z, Pan R, Quan HT. Path-integral approach to the calculation of the characteristic function of work. Phys Rev E 2020; 101:032111. [PMID: 32290008 DOI: 10.1103/physreve.101.032111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/19/2020] [Indexed: 11/07/2022]
Abstract
Work statistics characterizes important features of a nonequilibrium thermodynamic process, but the calculation of the work statistics in an arbitrary nonequilibrium process is usually a cumbersome task. In this work, we study the work statistics in quantum systems by employing Feynman's path-integral approach. We derive the analytical work distributions of two prototype quantum systems. The results are proved to be equivalent to the results obtained based on Schrödinger's formalism. We also calculate the work distributions in their classical counterparts by employing the path-integral approach. Our study demonstrates the effectiveness of the path-integral approach for the calculation of work statistics in both quantum and classical thermodynamics, and brings important insights to the understanding of the trajectory work in quantum systems.
Collapse
Affiliation(s)
- Tian Qiu
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Zhaoyu Fei
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Rui Pan
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China
| | - H T Quan
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China.,Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.,Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China
| |
Collapse
|