1
|
Wang Y, Qian Z, Tong H, Tanaka H. Hyperuniform disordered solids with crystal-like stability. Nat Commun 2025; 16:1398. [PMID: 39939581 PMCID: PMC11822127 DOI: 10.1038/s41467-025-56283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025] Open
Abstract
Hyperuniform disordered solids, characterised by unusually suppressed density fluctuations at low wavenumbers (q), are of great interest due to their potentially distinct properties as a unique glass state. From the jamming perspective, there is ongoing debate about the relationship between hyperuniformity and the jamming transition, as well as whether hyperuniformity persists above the jamming point. Here, we successfully generate over-jammed disordered solids exhibiting the strongest class of hyperuniformity, characterised by a power-law density spectrum (qα with α = 4). By decompressing both hyperuniform and conventional over-jammed packings to their respective marginally jammed states, we identify protocol-independent exponents: α ≈ 0.25 for density hyperuniformity and α ≈ 2 for contact-number hyperuniformity, both associated with the jamming transition. Although both marginally jammed and conventional over-jammed packings exhibit marginal stability, we demonstrate that hyperuniform over-jammed packings possess exceptional stability across vibrational, kinetic, thermodynamic, and mechanical properties-similar to crystals. These findings suggest that hyperuniform over-jammed packings offer crucial insights into the ideal disordered solid state and stand out as promising candidates for disordered metamaterials, uniquely combining hyperuniformity with ultrastability.
Collapse
Affiliation(s)
- Yinqiao Wang
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Zhuang Qian
- Department of Physics, University of Science and Technology of China, Hefei, China
| | - Hua Tong
- Department of Physics, University of Science and Technology of China, Hefei, China.
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Dale JR, Sartor JD, Dennis RC, Corwin EI. Hyperuniform jammed sphere packings have anomalous material properties. Phys Rev E 2022; 106:024903. [PMID: 36109903 DOI: 10.1103/physreve.106.024903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A spatial distribution is hyperuniform if it has local density fluctuations that vanish in the limit of long length scales. Hyperuniformity is a well known property of both crystals and quasicrystals. Of recent interest, however, is disordered hyperuniformity: the presence of hyperuniform scaling without long-range configurational order. Jammed granular packings have been proposed as an example of disordered hyperuniformity, but recent numerical investigation has revealed that many jammed systems instead exhibit a complex set of distinct behaviors at long, emergent length scales. We use the Voronoi tessellation as a tool to define a set of rescaling transformations that can impose hyperuniformity on an arbitrary weighted point process, and show that these transformations can be used in simulations to iteratively generate hyperuniform, mechanically stable packings of athermal soft spheres. These hyperuniform jammed packings display atypical mechanical properties, particularly in the low-frequency phononic excitations, which exhibit an isolated band of highly collective modes and a band gap around zero frequency.
Collapse
Affiliation(s)
- Jack R Dale
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - James D Sartor
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - R Cameron Dennis
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Eric I Corwin
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
3
|
Torquato S. Diffusion spreadability as a probe of the microstructure of complex media across length scales. Phys Rev E 2021; 104:054102. [PMID: 34942710 DOI: 10.1103/physreve.104.054102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/15/2021] [Indexed: 11/07/2022]
Abstract
Understanding time-dependent diffusion processes in multiphase media is of great importance in physics, chemistry, materials science, petroleum engineering, and biology. Consider the time-dependent problem of mass transfer of a solute between two phases and assume that the solute is initially distributed in one phase (phase 2) and absent from the other (phase 1). We desire the fraction of total solute present in phase 1 as a function of time, S(t), which we call the spreadability, since it is a measure of the spreadability of diffusion information as a function of time. We derive exact direct-space formulas for S(t) in any Euclidean space dimension d in terms of the autocovariance function as well as corresponding Fourier representations of S(t) in terms of the spectral density, which are especially useful when scattering information is available experimentally or theoretically. These are singular results because they are rare examples of mass transport problems where exact solutions are possible. We derive closed-form general formulas for the short- and long-time behaviors of the spreadability in terms of crucial small- and large-scale microstructural information, respectively. The long-time behavior of S(t) enables one to distinguish the entire spectrum of microstructures that span from hyperuniform to nonhyperuniform media. For hyperuniform media, disordered or not, we show that the "excess" spreadability, S(∞)-S(t), decays to its long-time behavior exponentially faster than that of any nonhyperuniform two-phase medium, the "slowest" being antihyperuniform media. The stealthy hyperuniform class is characterized by an excess spreadability with the fastest decay rate among all translationally invariant microstructures. We obtain exact results for S(t) for a variety of specific ordered and disordered model microstructures across dimensions that span from hyperuniform to antihyperuniform media. Moreover, we establish a remarkable connection between the spreadability and an outstanding problem in discrete geometry, namely, microstructures with "fast" spreadabilities are also those that can be derived from efficient "coverings" of space. We also identify heretofore unnoticed, to our best knowledge, remarkable links between the spreadability S(t) and NMR pulsed field gradient spin-echo amplitude as well as diffusion MRI measurements. This investigation reveals that the time-dependent spreadability is a powerful, dynamic-based figure of merit to probe and classify the spectrum of possible microstructures of two-phase media across length scales.
Collapse
Affiliation(s)
- Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
4
|
Yanagishima T, Russo J, Dullens RPA, Tanaka H. Towards Glasses with Permanent Stability. PHYSICAL REVIEW LETTERS 2021; 127:215501. [PMID: 34860078 DOI: 10.1103/physrevlett.127.215501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Unlike crystals, glasses age or devitrify over time, reflecting their nonequilibrium nature. This lack of stability is a serious issue in many industrial applications. Here, we show by numerical simulations that the devitrification of quasi-hard-sphere glasses is prevented by suppressing volume-fraction inhomogeneities. A monodisperse glass known to devitrify with "avalanchelike" intermittent dynamics is subjected to small iterative adjustments to particle sizes to make the local volume fractions spatially uniform. We find that this entirely prevents structural relaxation and devitrification over aging time scales, even in the presence of crystallites. There is a dramatic homogenization in the number of load-bearing nearest neighbors each particle has, indicating that ultrastable glasses may be formed via "mechanical homogenization." Our finding provides a physical principle for glass stabilization and opens a novel route to the formation of mechanically stabilized glasses.
Collapse
Affiliation(s)
- Taiki Yanagishima
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, OX1 3QZ, United Kingdom
- Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - John Russo
- Department of Physics, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Roel P A Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, OX1 3QZ, United Kingdom
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
5
|
Abstract
Transport properties of porous media are intimately linked to their pore-space microstructures. We quantify geometrical and topological descriptors of the pore space of certain disordered and ordered distributions of spheres, including pore-size functions and the critical pore radius δ_{c}. We focus on models of porous media derived from maximally random jammed sphere packings, overlapping spheres, equilibrium hard spheres, quantizer sphere packings, and crystalline sphere packings. For precise estimates of the percolation thresholds, we use a strict relation of the void percolation around sphere configurations to weighted bond percolation on the corresponding Voronoi networks. We use the Newman-Ziff algorithm to determine the percolation threshold using universal properties of the cluster size distribution. The critical pore radius δ_{c} is often used as the key characteristic length scale that determines the fluid permeability k. A recent study [Torquato, Adv. Wat. Resour. 140, 103565 (2020)10.1016/j.advwatres.2020.103565] suggested for porous media with a well-connected pore space an alternative estimate of k based on the second moment of the pore size 〈δ^{2}〉, which is easier to determine than δ_{c}. Here, we compare δ_{c} to the second moment of the pore size 〈δ^{2}〉, and indeed confirm that, for all porosities and all models considered, δ_{c}^{2} is to a good approximation proportional to 〈δ^{2}〉. However, unlike 〈δ^{2}〉, the permeability estimate based on δ_{c}^{2} does not predict the correct ranking of k for our models. Thus, we confirm 〈δ^{2}〉 to be a promising candidate for convenient and reliable estimates of the fluid permeability for porous media with a well-connected pore space. Moreover, we compare the fluid permeability of our models with varying degrees of order, as measured by the τ order metric. We find that (effectively) hyperuniform models tend to have lower values of k than their nonhyperuniform counterparts. Our findings could facilitate the design of porous media with desirable transport properties via targeted pore statistics.
Collapse
|
6
|
Nizam ÜS, Makey G, Barbier M, Kahraman SS, Demir E, Shafigh EE, Galioglu S, Vahabli D, Hüsnügil S, Güneş MH, Yelesti E, Ilday S. Dynamic evolution of hyperuniformity in a driven dissipative colloidal system. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:304002. [PMID: 33878751 DOI: 10.1088/1361-648x/abf9b8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Hyperuniformity is evolving to become a unifying concept that can help classify and characterize equilibrium and nonequilibrium states of matter. Therefore, understanding the extent of hyperuniformity in dissipative systems is critical. Here, we study the dynamic evolution of hyperuniformity in a driven dissipative colloidal system. We experimentally show and numerically verify that the hyperuniformity of a colloidal crystal is robust against various lattice imperfections and environmental perturbations. This robustness even manifests during crystal disassembly as the system switches between strong (class I), logarithmic (class II), weak (class III), and non-hyperuniform states. To aid analyses, we developed a comprehensive computational toolbox, enabling real-time characterization of hyperuniformity in real- and reciprocal-spaces together with the evolution of several order metric features, and measurements showing the effect of external perturbations on the spatiotemporal distribution of the particles. Our findings provide a new framework to understand the basic principles that drive a dissipative system to a hyperuniform state.
Collapse
Affiliation(s)
- Ü Seleme Nizam
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Physics, Boğaziçi University, İstanbul, 34342, Turkey
| | - Ghaith Makey
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Michaël Barbier
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - S Süleyman Kahraman
- Department of Physics, Middle East Technical University, Ankara, 06800, Turkey
| | - Esin Demir
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Ehsan E Shafigh
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Sezin Galioglu
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Danial Vahabli
- Department of Physics, Middle East Technical University, Ankara, 06800, Turkey
| | - Sercan Hüsnügil
- Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Muhammed H Güneş
- Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Efe Yelesti
- Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Serim Ilday
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
7
|
Chieco AT, Durian DJ. Quantifying the long-range structure of foams and other cellular patterns with hyperuniformity disorder length spectroscopy. Phys Rev E 2021; 103:062609. [PMID: 34271712 DOI: 10.1103/physreve.103.062609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/21/2021] [Indexed: 11/07/2022]
Abstract
We investigate the local and long-range structure of several space-filling cellular patterns: bubbles in a quasi-two-dimensional foam, and Voronoi constructions made around points that are uncorrelated (Poisson patterns), low discrepancy (Halton patterns), and displaced from a lattice by Gaussian noise (Einstein patterns). We study local structure with distributions of quantities including cell areas and side numbers. The former is the widest for the bubbles making foams the most locally disordered, while the latter show no major differences between the cellular patterns. To study long-range structure, we begin by representing the cellular systems as patterns of points, both unweighted and weighted by cell area. For this, foams are represented by their bubble centroids and the Voronoi constructions are represented by the centroids as well as the points from which they are created. Long-range structure is then quantified in two ways: by the spectral density, and by a real-space analog where the variance of density fluctuations for a set of measuring windows of diameter D is made more intuitive by conversion to the distance h(D) from the window boundary where these fluctuations effectively occur. The unweighted bubble centroids have h(D) that collapses for the different ages of the foam with random Poissonian fluctuations at long distances. The area-weighted bubble centroids and area-weighted Voronoi points all have constant h(D)=h_{e} for large D; the bubble centroids have the smallest value h_{e}=0.084sqrt[〈a〉], meaning they are the most uniform. Area-weighted Voronoi centroids exhibit collapse of h(D) to the same constant h_{e}=0.084sqrt[〈a〉] as for the bubble centroids. A similar analysis is performed on the edges of the cells and the spectra of h(D) for the foam edges show h(D)∼D^{1-ε} where ε=0.30±0.15.
Collapse
Affiliation(s)
- A T Chieco
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA
| | - D J Durian
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA
| |
Collapse
|
8
|
Rohfritsch A, Conoir JM, Valier-Brasier T, Marchiano R. Impact of particle size and multiple scattering on the propagation of waves in stealthy-hyperuniform media. Phys Rev E 2020; 102:053001. [PMID: 33327074 DOI: 10.1103/physreve.102.053001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/06/2020] [Indexed: 11/07/2022]
Abstract
Propagation of waves in materials that exhibit stealthy-hyperuniform long-range correlations is investigated. By using a modal decomposition of the field that takes multiple scattering into account at all orders, we study the impact of the concentration of particles on the transparency of such materials at low frequency. An upper frequency limit for transparency is defined that include both the particle size and the degree of stealthiness. We show that the independent scattering approximation is not relevant to calculate elastic mean free paths when wavelength becomes comparable to the size of particles. We find that transparency is very robust with regard to the degree of heterogeneity of the host random medium and the polydispersity of particles. Finally, it is shown that resonances can be used as the frequency filter.
Collapse
Affiliation(s)
- Adrien Rohfritsch
- Sorbonne Université, CNRS, Institut Jean Le Rond ∂'Alembert, UMR 7190, 4 Place Jussieu, Paris, F-75005, France
| | - Jean-Marc Conoir
- Sorbonne Université, CNRS, Institut Jean Le Rond ∂'Alembert, UMR 7190, 4 Place Jussieu, Paris, F-75005, France
| | - Tony Valier-Brasier
- Sorbonne Université, CNRS, Institut Jean Le Rond ∂'Alembert, UMR 7190, 4 Place Jussieu, Paris, F-75005, France
| | - Régis Marchiano
- Sorbonne Université, CNRS, Institut Jean Le Rond ∂'Alembert, UMR 7190, 4 Place Jussieu, Paris, F-75005, France
| |
Collapse
|
9
|
Chremos A. Design of nearly perfect hyperuniform polymeric materials. J Chem Phys 2020; 153:054902. [PMID: 32770903 PMCID: PMC7530914 DOI: 10.1063/5.0017861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 01/18/2023] Open
Abstract
Disordered hyperuniform materials are exotic amorphous systems that simultaneously exhibit anomalous suppression of long-range density fluctuations, comparable in amplitude to that of crystals and quasi-crystalline materials, while lacking the translational order characteristic of simple liquids. We establish a framework to quantitatively predict the emergence of hyperuniformity in polymeric materials by considering the distribution of localized polymer subregions, instead of considering the whole material. We demonstrate that this highly tunable approach results in arbitrarily small long-range density fluctuations in the liquid state. Our simulations also indicate that long-ranged density fluctuation of the whole polymeric material is remarkably insensitive to molecular topology (linear chain, unknotted ring, star, and bottlebrush) and depends on temperature in an apparently near universal fashion. Our findings open the way for the creation of nearly perfect hyperuniform polymeric materials.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|