1
|
Zhang Z, Yi G, Li P, Zhang X, Wan Z, Wang X, Zhang C, Zhang Y. Recent Advances in Binary Colloidal Crystals for Photonics and Porous Material Fabrication. J Phys Chem B 2021; 125:6012-6022. [PMID: 34038121 DOI: 10.1021/acs.jpcb.1c03349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the past few years, binary colloidal crystals (BCCs) composed of both large and small particles have attracted considerable attention from the scientific community as an exciting alternative to single colloidal crystals (SCCs). In particular, more complex structures with diverse nanotopographies and desirable optical properties of BCCs can be obtained by various colloidal assembly methods, as compared to SCCs. Furthermore, high accuracy in crystal growth with controllable stoichiometries allows for a great deal of promising applications in the fields of both interfacial and material sciences. The visible-light diffraction property of BCCs is more superior than that of SCCs, which makes them have more promising applications in the fabrication of photonic crystals with full band gaps. On the other hand, their spherical shapes and ease of removal property make them ideal templates for ordered porous material fabrication. Hence, this perspective outlined recent advances in assembly approaches of BCCs, with an emphasis on their promising applications for advanced photonics and multifunctional porous material fabrication. Eventually, some challenging yet important issues and some future perspectives are further discussed.
Collapse
Affiliation(s)
- Zhengting Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Guiyun Yi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Peng Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Xiuxiu Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Zhuoyan Wan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Xiaodong Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Chuanxiang Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Yulong Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| |
Collapse
|
2
|
Xiao K, Chen X, Cao XZ, Wu CX. Field-triggered vertical positional transition of a microparticle suspended in a nematic liquid crystal cell. Phys Rev E 2020; 101:052706. [PMID: 32575330 DOI: 10.1103/physreve.101.052706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/11/2020] [Indexed: 11/07/2022]
Abstract
In this paper, based on the numerical calculation of total energy utilizing the Green's function method, we investigate how a field-triggered vertical positional transition of a microparticle suspended in a nematic liquid crystal cell is influenced by the direction of the applied field, surface anchoring feature, and nematic's dielectric properties. The new equilibrium position of the translational movement is decided via a competition between the buoyant force and the effective force built on the microparticle by the elastic energy gradient along the vertical direction. The threshold value of external field depends on thickness L and Frank elastic constant K and slightly on the microparticle size and density, in a Fréedericksz-like manner, but by a factor. For a nematic liquid crystal cell with planar surface alignment, a bistable equilibrium structure for the transition is found when the direction of the applied electric field is (a) perpendicular to the two plates of the cell with positive molecular dielectric anisotropy or (b) parallel to the two plates and the anchoring direction of the cell with negative molecular dielectric anisotropy. When the electric field applied is parallel to both plates and perpendicular to the anchoring direction, the microparticle suspended in the nematic liquid crystal tends to be trapped in the midplane, regardless of the sign of the molecular dielectric anisotropy. Such a phenomenon also occurs for negative molecular dielectric anisotropy if the external field is applied perpendicular to the two plates. Explicit formulas proposed for the critical electric field agree extremely well with the numerical calculation.
Collapse
Affiliation(s)
- Ke Xiao
- Department of Physics, School of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xi Chen
- Department of Physics, School of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xue-Zheng Cao
- Department of Physics, School of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chen-Xu Wu
- Department of Physics, School of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
3
|
Denniston C. Theory and simulation of objects in liquid crystals. ADVANCES IN PHYSICS: X 2020. [DOI: 10.1080/23746149.2020.1806728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Colin Denniston
- Department of Applied Mathematics and Department of Physics and Astronomy, The University of Western Ontario, London, ON, Canada
| |
Collapse
|