1
|
Fei L, Qin F, Wang G, Luo KH, Derome D, Carmeliet J. Droplet evaporation in finite-size systems: Theoretical analysis and mesoscopic modeling. Phys Rev E 2022; 105:025101. [PMID: 35291136 DOI: 10.1103/physreve.105.025101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The classical D^{2}-Law states that the square of the droplet diameter decreases linearly with time during its evaporation process, i.e., D^{2}(t)=D_{0}^{2}-Kt, where D_{0} is the droplet initial diameter and K is the evaporation constant. Though the law has been widely verified by experiments, considerable deviations are observed in many cases. In this work, a revised theoretical analysis of the single droplet evaporation in finite-size open systems is presented for both two-dimensional (2D) and 3D cases. Our analysis shows that the classical D^{2}-Law is only applicable for 3D large systems (L≫D_{0}, L is the system size), while significant deviations occur for small (L≤5D_{0}) and/or 2D systems. Theoretical solution for the temperature field is also derived. Moreover, we discuss in detail the proper numerical implementation of droplet evaporation in finite-size open systems by the mesoscopic lattice Boltzmann method (LBM). Taking into consideration shrinkage effects and an adaptive pressure boundary condition, droplet evaporation in finite-size 2D/3D systems with density ratio up to 328 within a wide parameter range (K=[0.003,0.18] in lattice units) is simulated, and remarkable agreement with the theoretical solution is achieved, in contrast to previous simulations. The present work provides insights into realistic droplet evaporation phenomena and their numerical modeling using diffuse-interface methods.
Collapse
Affiliation(s)
- Linlin Fei
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| | - Feifei Qin
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| | - Geng Wang
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Dominique Derome
- Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Jan Carmeliet
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| |
Collapse
|
2
|
Qin F, Zhao J, Kang Q, Derome D, Carmeliet J. Lattice Boltzmann Modeling of Drying of Porous Media Considering Contact Angle Hysteresis. Transp Porous Media 2021; 140:395-420. [PMID: 34720284 PMCID: PMC8550062 DOI: 10.1007/s11242-021-01644-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/05/2021] [Indexed: 11/15/2022]
Abstract
Drying of porous media is governed by a combination of evaporation and movement of the liquid phase within the porous structure. Contact angle hysteresis induced by surface roughness is shown to influence multi-phase flows, such as contact line motion of droplet, phase distribution during drainage and coffee ring formed after droplet drying in constant contact radius mode. However, the influence of contact angle hysteresis on liquid drying in porous media is still an unanswered question. Lattice Boltzmann model (LBM) is an advanced numerical approach increasingly used to study phase change problems including drying. In this paper, based on a geometric formulation scheme to prescribe contact angle, we implement a contact angle hysteresis model within the framework of a two-phase pseudopotential LBM. The capability and accuracy of prescribing and automatically measuring contact angles over a large range are tested and validated by simulating droplets sitting on flat and curved surfaces. Afterward, the proposed contact angle hysteresis model is validated by modeling droplet drying on flat and curved surfaces. Then, drying of two connected capillary tubes is studied, considering the influence of different contact angle hysteresis ranges on drying dynamics. Finally, the model is applied to study drying of a dual-porosity porous medium, where phase distribution and drying rate are compared with and without contact angle hysteresis. The proposed model is shown to be capable of dealing with different contact angle hysteresis ranges accurately and of capturing the physical mechanisms during drying in different porous media including flat and curved geometries. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11242-021-01644-9.
Collapse
Affiliation(s)
- Feifei Qin
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), 8092 Zürich, Switzerland
| | - Jianlin Zhao
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), 8092 Zürich, Switzerland
| | - Qinjun Kang
- Earth and Environment Sciences Division (EES-16), Los Alamos National Laboratory (LANL), Los Alamos, NM 87545 USA
| | - Dominique Derome
- Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada
| | - Jan Carmeliet
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), 8092 Zürich, Switzerland
| |
Collapse
|
3
|
Qin F, Zhao J, Kang Q, Brunschwiler T, Derome D, Carmeliet J. Lattice Boltzmann modeling of heat conduction enhancement by colloidal nanoparticle deposition in microporous structures. Phys Rev E 2021; 103:023311. [PMID: 33736117 DOI: 10.1103/physreve.103.023311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 01/25/2021] [Indexed: 11/07/2022]
Abstract
Drying of colloidal suspension towards the exploitation of the resultant nanoparticle deposition has been applied in different research and engineering fields. Recent experimental studies have shown that neck-based thermal structure (NTS) by colloidal nanoparticle deposition between microsize filler particle configuration (FPC) can significantly enhance vertical heat conduction in innovative three-dimensional chip stacks [Brunschwiler et al., J. Electron. Packag. 138, 041009 (2016)10.1115/1.4034927]. However, an in-depth understanding of the mechanisms of colloidal liquid drying, neck formation, and their influence on heat conduction is still lacking. In this paper, using the lattice Boltzmann method, we model neck formation in FPCs and evaluate the thermal performances of resultant NTSs. The colloidal liquid is found drying continuously from the periphery of the microstructure to its center with a decreasing drying rate. With drying, more necks of smaller size are formed between adjacent filler particles, while fewer necks of larger size are formed between filler particle and the top/bottom plate of the FPCs. The necks, forming critical throats between the filler particles, are found to improve the heat flux significantly, leading to an overall heat conduction enhancement of 2.4 times. In addition, the neck count, size, and distribution as well as the thermal performance of NTSs are found to be similar for three different FPCs at a constant filler particle volume fraction. Our simulation results on neck formation and thermal performances of NTSs are in good agreement with experimental results. This demonstrates that the current lattice Boltzmann models are accurate in modeling drying of colloidal suspension and heat conduction in microporous structures, and have high potentials to study other problems such as surface coating, salt transport, salt crystallization, and food preserving.
Collapse
Affiliation(s)
- Feifei Qin
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland.,Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), Dübendorf 8600, Switzerland
| | - Jianlin Zhao
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| | - Qinjun Kang
- Earth and Environment Sciences Division (EES-16), Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, USA
| | - Thomas Brunschwiler
- Smart System Integration, IBM Research-Zürich, Saumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Dominique Derome
- Dep. of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke Qc J1K 2R1 Canada
| | - Jan Carmeliet
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| |
Collapse
|
4
|
Su M, Qin F, Zhang Z, Chen B, Pan Q, Huang Z, Cai Z, Zhao Z, Hu X, Derome D, Carmeliet J, Song Y. Non‐Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Meng Su
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology Beijing National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feifei Qin
- Department of Mechanical and Process Engineering Swiss Federal Institute of Technology in Zürich (ETH Zürich) 8093 Zürich Switzerland
- Laboratory of Multiscale Studies in Building Physics Empa (Swiss Federal Laboratories for Materials Science and Technology) 8600 Dübendorf Switzerland
| | - Zeying Zhang
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology Beijing National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology Beijing National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology Beijing National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhandong Huang
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology Beijing National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Zheren Cai
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology Beijing National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhipeng Zhao
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology Beijing National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaotian Hu
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology Beijing National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Dominique Derome
- Laboratory of Multiscale Studies in Building Physics Empa (Swiss Federal Laboratories for Materials Science and Technology) 8600 Dübendorf Switzerland
- Department of Civil and Building Engineering Université de Sherbrooke Sherbrooke QC J1K 2R1 Canada
| | - Jan Carmeliet
- Department of Mechanical and Process Engineering Swiss Federal Institute of Technology in Zürich (ETH Zürich) 8093 Zürich Switzerland
| | - Yanlin Song
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology Beijing National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
5
|
Su M, Qin F, Zhang Z, Chen B, Pan Q, Huang Z, Cai Z, Zhao Z, Hu X, Derome D, Carmeliet J, Song Y. Non-Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. Angew Chem Int Ed Engl 2020; 59:14234-14240. [PMID: 32500938 DOI: 10.1002/anie.202007224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 11/09/2022]
Abstract
A key issue of micro/nano devices is how to integrate micro/nanostructures with specified chemical components onto various curved surfaces. Hydrodynamic printing of micro/nanostructures on three-dimensional curved surfaces is achieved with a strategy that combines template-induced hydrodynamic printing and self-assembly of nanoparticles (NPs). Non-lithography flexible wall-shaped templates are replicated with microscale features by dicing a trench-shaped silicon wafer. Arising from the capillary pumped function between the template and curved substrates, NPs in the colloidal suspension self-assemble into close-packed micro/nanostructures without a gravity effect. Theoretical analysis with the lattice Boltzmann model reveals the fundamental principles of the hydrodynamic assembly process. Spiral linear structures achieved by two kinds of fluorescent NPs show non-interfering photoluminescence properties, while the waveguide and photoluminescence are confirmed in 3D curved space. The printed multiconstituent micro/nanostructures with single-NP resolution may serve as a general platform for optoelectronics beyond flat surfaces.
Collapse
Affiliation(s)
- Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feifei Qin
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology in Zürich (ETH Zürich), 8093, Zürich, Switzerland.,Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), 8600, Dübendorf, Switzerland
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhandong Huang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Zheren Cai
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipeng Zhao
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaotian Hu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Dominique Derome
- Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), 8600, Dübendorf, Switzerland.,Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Jan Carmeliet
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology in Zürich (ETH Zürich), 8093, Zürich, Switzerland
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|