Liu J, Sun K, Wang H. Anomalous diffusion in external-force-affected deterministic systems.
Phys Rev E 2024;
110:014204. [PMID:
39160918 DOI:
10.1103/physreve.110.014204]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/20/2024] [Indexed: 08/21/2024]
Abstract
This study investigates the impact of external forces on the movement of particles, specifically focusing on a type of box piecewise linear map that generates normal diffusion akin to Brownian motion. Through numerical methods, the research delves into the effects of two distinct external forces: linear forces linked to the particle's current position and periodic sinusoidal forces related to time. The results uncover anomalous dynamical behavior characterized by nonlinear growth in the ensemble-averaged mean-squared displacement (EAMSD), aging, and ergodicity breaking. Notably, the diffusion pattern of particles under linear external forces resembles an Ehrenfest double urn model, with its asymptotic EAMSD coinciding with the Langevin equation under linear potential. Meanwhile, particle movement influenced by periodic sinusoidal forces corresponds to an inhomogeneous Markov chain, with its external force amplitude and diffusion coefficient function exhibiting a "multipeak" fractal structure. The study also provides insights into the formation of this structure through the turnstiles dynamics.
Collapse