1
|
Chen Z, Zheng Z, Xu C. Synchronization transitions in phase oscillator populations with partial adaptive coupling. CHAOS (WOODBURY, N.Y.) 2024; 34:063106. [PMID: 38829794 DOI: 10.1063/5.0211849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
The adaptation underlying many realistic processes plays a pivotal role in shaping the collective dynamics of diverse systems. Here, we untangle the generic conditions for synchronization transitions in a system of coupled phase oscillators incorporating the adaptive scheme encoded by the feedback between the coupling and the order parameter via a power-law function with different weights. We mathematically argue that, in the subcritical and supercritical correlation scenarios, there exists no critical adaptive fraction for synchronization transitions converting from the first (second)-order to the second (first)-order. In contrast to the synchronization transitions previously deemed, the explosive and continuous phase transitions take place in the corresponding regions as long as the adaptive fraction is nonzero, respectively. Nevertheless, we uncover that, at the critical correlation, the routes toward synchronization depend crucially on the relative adaptive weights. In particular, we unveil that the emergence of a range of interrelated scaling behaviors of the order parameter near criticality, manifesting the subcritical and supercritical bifurcations, are responsible for various observed phase transitions. Our work, thus, provides profound insights for understanding the dynamical nature of phase transitions, and for better controlling and manipulating synchronization transitions in networked systems with adaptation.
Collapse
Affiliation(s)
- Zhenyu Chen
- School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
| | - Zhigang Zheng
- Institute of Systems Science and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Can Xu
- Institute of Systems Science and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
2
|
Ghosh R, Verma UK, Jalan S, Shrimali MD. Chimeric states induced by higher-order interactions in coupled prey-predator systems. CHAOS (WOODBURY, N.Y.) 2024; 34:061101. [PMID: 38829788 DOI: 10.1063/5.0213288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/12/2024] [Indexed: 06/05/2024]
Abstract
Higher-order interactions have been instrumental in characterizing the intricate complex dynamics in a diverse range of large-scale complex systems. Our study investigates the effect of attractive and repulsive higher-order interactions in globally and non-locally coupled prey-predator Rosenzweig-MacArthur systems. Such interactions lead to the emergence of complex spatiotemporal chimeric states, which are otherwise unobserved in the model system with only pairwise interactions. Our model system exhibits a second-order transition from a chimera-like state (mixture of oscillating and steady state nodes) to a chimera-death state through a supercritical Hopf bifurcation. The origin of these states is discussed in detail along with the effect of the higher-order non-local topology which leads to the rise of a distinct and dynamical state termed as "amplitude-mediated chimera-like states." Our study observes that the introduction of higher-order attractive and repulsive interactions exhibit incoherence and promote persistence in consumer-resource population dynamics as opposed to susceptibility shown by synchronized dynamics with only pairwise interactions, and these results may be of interest to conservationists and theoretical ecologists studying the effect of competing interactions in ecological networks.
Collapse
Affiliation(s)
- Richita Ghosh
- Department of Physics, Central University of Rajasthan, Rajasthan, Ajmer 305 817, India
| | - Umesh Kumar Verma
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
| | - Sarika Jalan
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
| | - Manish Dev Shrimali
- Department of Physics, Central University of Rajasthan, Rajasthan, Ajmer 305 817, India
| |
Collapse
|
3
|
Muthanna YA, Jafri HH. Explosive transitions in coupled Lorenz oscillators. Phys Rev E 2024; 109:054206. [PMID: 38907430 DOI: 10.1103/physreve.109.054206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 06/24/2024]
Abstract
We study the transition to synchronization in an ensemble of chaotic oscillators that are interacting on a star network. These oscillators possess an invariant symmetry and we study emergent behavior by introducing the timescale variations in the dynamics of the nodes and the hub. If the coupling preserves the symmetry, the ensemble exhibits consecutive explosive transitions, each one associated with a hysteresis. The first transition is the explosive synchronization from a desynchronized state to a synchronized state which occurs discontinuously with the formation of intermediate clusters. These clusters appear because of the driving-induced multistability and the resulting attractors exhibit intermittent synchrony (antisynchrony). The second transition is the explosive death that occurs as a result of stabilization of the stable fixed points. However, if the symmetry is not preserved, the system again makes a first-order transition from an oscillatory state to death, namely, an explosive death. These transitions are studied with the help of the master stability functions, Lyapunov exponents, and the stability analysis.
Collapse
Affiliation(s)
- Yusra Ahmed Muthanna
- Department of Physics, Aligarh Muslim University, Aligarh 202 002, India
- Physics Department, Taiz University, Taiz 6803, Yemen
| | - Haider Hasan Jafri
- Department of Physics, Aligarh Muslim University, Aligarh 202 002, India
| |
Collapse
|
4
|
Moyal B, Rajwani P, Dutta S, Jalan S. Rotating clusters in phase-lagged Kuramoto oscillators with higher-order interactions. Phys Rev E 2024; 109:034211. [PMID: 38632814 DOI: 10.1103/physreve.109.034211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/06/2024] [Indexed: 04/19/2024]
Abstract
The effect of phase-lag in pairwise interactions has been a topic of great interest for a while. However, real-world systems often have interactions that are beyond pairwise and can be modeled using simplicial complexes. We show that the inclusion of higher-order interactions in phase-lagged coupled Kuramoto oscillators shifts the critical point at which first-order transition from a cluster synchronized state to an incoherent state takes place. Considering the polar coordinates, we obtain the rotation frequency of the clusters, which turns out to be a function of the phase-lag parameter. In turn, the phase- lag can be used as a control parameter to achieve a desired cluster frequency. Moreover, in the thermodynamic limit, by employing the Ott-Antonsen approach we derive a reduced equation for the order parameter measuring cluster synchronization and progress further through the self-consistency method to obtain a closed form of the order parameter measuring global synchronization which was lacking in the Ott-Antonsen approach.
Collapse
Affiliation(s)
- Bhuwan Moyal
- Complex Systems Laboratory, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453552, India
| | - Priyanka Rajwani
- Complex Systems Laboratory, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453552, India
| | - Subhasanket Dutta
- Complex Systems Laboratory, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453552, India
| | - Sarika Jalan
- Complex Systems Laboratory, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453552, India
| |
Collapse
|
5
|
Jain PB, Nguyen TT, Mináč J, Muller LE, Budzinski RC. Composed solutions of synchronized patterns in multiplex networks of Kuramoto oscillators. CHAOS (WOODBURY, N.Y.) 2023; 33:103128. [PMID: 37844292 DOI: 10.1063/5.0161399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
Networks with different levels of interactions, including multilayer and multiplex networks, can display a rich diversity of dynamical behaviors and can be used to model and study a wide range of systems. Despite numerous efforts to investigate these networks, obtaining mathematical descriptions for the dynamics of multilayer and multiplex systems is still an open problem. Here, we combine ideas and concepts from linear algebra and graph theory with nonlinear dynamics to offer a novel approach to study multiplex networks of Kuramoto oscillators. Our approach allows us to study the dynamics of a large, multiplex network by decomposing it into two smaller systems: one representing the connection scheme within layers (intra-layer), and the other representing the connections between layers (inter-layer). Particularly, we use this approach to compose solutions for multiplex networks of Kuramoto oscillators. These solutions are given by a combination of solutions for the smaller systems given by the intra- and inter-layer systems, and in addition, our approach allows us to study the linear stability of these solutions.
Collapse
Affiliation(s)
- Priya B Jain
- Department of Mathematics, Western University, London, Ontario N6A 3K7, Canada
- Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada
- Western Academy for Advanced Research, Western University, London, Ontario N6A 3K7, Canada
| | - Tung T Nguyen
- Department of Mathematics, Western University, London, Ontario N6A 3K7, Canada
- Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada
- Western Academy for Advanced Research, Western University, London, Ontario N6A 3K7, Canada
| | - Ján Mináč
- Department of Mathematics, Western University, London, Ontario N6A 3K7, Canada
- Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada
- Western Academy for Advanced Research, Western University, London, Ontario N6A 3K7, Canada
| | - Lyle E Muller
- Department of Mathematics, Western University, London, Ontario N6A 3K7, Canada
- Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada
- Western Academy for Advanced Research, Western University, London, Ontario N6A 3K7, Canada
| | - Roberto C Budzinski
- Department of Mathematics, Western University, London, Ontario N6A 3K7, Canada
- Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada
- Western Academy for Advanced Research, Western University, London, Ontario N6A 3K7, Canada
| |
Collapse
|
6
|
Rathore V, Suman A, Jalan S. Synchronization onset for contrarians with higher-order interactions in multilayer systems. CHAOS (WOODBURY, N.Y.) 2023; 33:091105. [PMID: 37729103 DOI: 10.1063/5.0166627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
We investigate the impact of contrarians (via negative coupling) in multilayer networks of phase oscillators having higher-order interactions. We report that the multilayer framework facilitates synchronization onset in the negative pairwise coupling regime. The multilayering strength governs the onset of synchronization and the nature of the phase transition, whereas the higher-order interactions dictate the backward critical coupling. Specifically, the system does not synchronize below a critical value of the multilayering strength. The analytical calculations using the mean-field Ott-Antonsen approach agree with the simulations. The results presented here may be useful for understanding emergent behaviors in real-world complex systems with contrarians and higher-order interactions, such as the brain and social system.
Collapse
Affiliation(s)
- Vasundhara Rathore
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Ayushi Suman
- Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sarika Jalan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
- Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
7
|
Kongni SJ, Nguefoue V, Njougouo T, Louodop P, Ferreira FF, Tchitnga R, Cerdeira HA. Phase transitions on a multiplex of swarmalators. Phys Rev E 2023; 108:034303. [PMID: 37849080 DOI: 10.1103/physreve.108.034303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/01/2023] [Indexed: 10/19/2023]
Abstract
Dynamics of bidirectionally coupled swarmalators subject to attractive and repulsive couplings is analyzed. The probability of two elements in different layers being connected strongly depends on a defined vision range r_{c} which appears to lead both layers in different patterns while varying its values. Particularly, the interlayer static sync π has been found and its stability is proven. First-order transitions are observed when the repulsive coupling strength σ_{r} is very small for a fixed r_{c} and, moreover, in the absence of the repulsive coupling, they also appear for sufficiently large values of r_{c}. For σ_{r}=0 and for sufficiently small values of r_{c}, both layers achieve a second-order transition in a surprising two steps that are characterized by the drop of the energy of the internal phases while increasing the value of the interlayer attractive coupling σ_{a} and later a smooth jump, up to high energy value where synchronization is achieved. During these transitions, the internal phases present rotating waves with counterclockwise and later clockwise directions until synchronization, as σ_{a} increases. These results are supported by simulations and animations added as supplemental materials.
Collapse
Affiliation(s)
- Steve J Kongni
- Research Unit Condensed Matter, Electronics and Signal Processing, University of Dschang, P. O. Box 67 Dschang, Cameroon and MoCLiS Research Group, Dschang, Cameroon
| | - Venceslas Nguefoue
- Research Unit Condensed Matter, Electronics and Signal Processing, University of Dschang, P. O. Box 67 Dschang, Cameroon and MoCLiS Research Group, Dschang, Cameroon
| | - Thierry Njougouo
- Faculty of Computer Science and naXys Institute, University of Namur, 5000 Namur, Belgium; Namur Institute for Complex Systems (naXys), University of Namur, Belgium; Department of Electrical and Electronic Engineering, Faculty of Engineering and Technology (FET), University of Buea, P. O. Box 63, Buea, Cameroon; and MoCLiS Research Group, Dschang, Cameroon
| | - Patrick Louodop
- Research Unit Condensed Matter, Electronics and Signal Processing, University of Dschang, P. O. Box 67 Dschang, Cameroon; ICTP South American Institute for Fundamental Research, São Paulo State University (UNESP), Instituto de Física Teórica, 01140-070 São Paulo, Brazil; and MoCLiS Research Group, Dschang, Cameroon
| | - Fernando Fagundes Ferreira
- Center for Interdisciplinary Research on Complex Systems, University of Sao Paulo, São Paulo 03828-000, Brazil; and Department of Physics-FFCLRP, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Robert Tchitnga
- Research Unit Condensed Matter, Electronics and Signal Processing, University of Dschang, P. O. Box 67 Dschang, Cameroon
| | - Hilda A Cerdeira
- São Paulo State University (UNESP), Instituto de Física Teórica, 01140-070 São Paulo, Brazil and Epistemic, Gomez & Gomez Ltda. ME, 05305-031 São Paulo, Brazil
| |
Collapse
|
8
|
Rajwani P, Suman A, Jalan S. Tiered synchronization in Kuramoto oscillators with adaptive higher-order interactions. CHAOS (WOODBURY, N.Y.) 2023; 33:2894470. [PMID: 37276556 DOI: 10.1063/5.0150125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Phase transitions widely occur in natural systems. Incorporation of higher-order interactions in coupled dynamics is known to cause first-order phase transition to synchronization in an otherwise smooth second-order in the presence of only pairwise interactions. Here, we discover that adaptation in higher-order interactions restores the second-order phase transition in the former setup and notably produces additional bifurcation referred as tiered synchronization as a consequence of combination of super-critical pitchfork and two saddle node bifurcations. The Ott-Antonsen manifold underlines the interplay of higher-order interactions and adaptation in instigating tiered synchronization, as well as provides complete description of all (un)stable states. These results would be important in comprehending dynamics of real-world systems with inherent higher-order interactions and adaptation through feedback coupling.
Collapse
Affiliation(s)
- Priyanka Rajwani
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Ayushi Suman
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sarika Jalan
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
9
|
Miranda M, Frasca M, Estrada E. Topologically induced suppression of explosive synchronization. CHAOS (WOODBURY, N.Y.) 2023; 33:2887742. [PMID: 37125934 DOI: 10.1063/5.0142418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Nowadays, explosive synchronization is a well-documented phenomenon consisting in a first-order transition that may coexist with classical synchronization. Typically, explosive synchronization occurs when the network structure is represented by the classical graph Laplacian, and the node frequency and its degree are correlated. Here, we answer the question on whether this phenomenon can be observed in networks when the oscillators are coupled via degree-biased Laplacian operators. We not only observe that this is the case but also that this new representation naturally controls the transition from explosive to standard synchronization in a network. We prove analytically that explosive synchronization emerges when using this theoretical setting in star-like networks. As soon as this star-like network is topologically converted into a network containing cycles, the explosive synchronization gives rise to classical synchronization. Finally, we hypothesize that this mechanism may play a role in switching from normal to explosive states in the brain, where explosive synchronization has been proposed to be related to some pathologies like epilepsy and fibromyalgia.
Collapse
Affiliation(s)
- Manuel Miranda
- Institute of Cross-Disciplinary Physics and Complex Systems, IFISC (UIB-CSIC), 07122 Palma de Mallorca, Spain
| | - Mattia Frasca
- Department of Electrical, Electronics and Computer Science Engineering, University of Catania, I-95125 Catania, Italy
- Istituto di Analisi dei Sistemi ed Informatica "A. Ruberti", Consiglio Nazionale delle Ricerche (IASI-CNR), 00185 Roma, Italy
| | - Ernesto Estrada
- Institute of Cross-Disciplinary Physics and Complex Systems, IFISC (UIB-CSIC), 07122 Palma de Mallorca, Spain
| |
Collapse
|
10
|
Ling X, Ju WB, Guo N, Zhu KJ, Wu CY, Hao QY. Effects of topological characteristics on rhythmic states of the D-dimensional Kuramoto model in complex networks. CHAOS (WOODBURY, N.Y.) 2022; 32:013118. [PMID: 35105134 DOI: 10.1063/5.0058747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Synchronization is a ubiquitous phenomenon in engineering and natural ecosystems. While the dynamics of synchronization modeled by the Kuramoto model are commonly studied in two dimensions and the state of dynamic units is characterized by a scalar angle variable, we studied the Kuramoto model generalized to D dimensions in the framework of a complex network and utilized the local synchronous order parameter between the agent and its neighbors as the controllable variable to adjust the coupling strength. Here, we reported that average connectivity of networks affects the time-dependent, rhythmic, cyclic state. Importantly, we found that the level of heterogeneity of networks governs the rhythmic state in the transition process. The analytical treatment for observed scenarios in a D-dimensional Kuramoto model at D=3 was provided. These results offered a platform for a better understanding of time-dependent swarming and flocking dynamics in nature.
Collapse
Affiliation(s)
- Xiang Ling
- School of Automotive and Transportation Engineering, Hefei University of Technology, 230009 Hefei, People's Republic of China
| | - Wen-Bin Ju
- School of Automotive and Transportation Engineering, Hefei University of Technology, 230009 Hefei, People's Republic of China
| | - Ning Guo
- School of Automotive and Transportation Engineering, Hefei University of Technology, 230009 Hefei, People's Republic of China
| | - Kong-Jin Zhu
- School of Automotive and Transportation Engineering, Hefei University of Technology, 230009 Hefei, People's Republic of China
| | - Chao-Yun Wu
- School of Mathematics and Physics, Anqing Normal University, Anqing 246133, People's Republic of China
| | - Qing-Yi Hao
- School of Mathematics and Physics, Anqing Normal University, Anqing 246133, People's Republic of China
| |
Collapse
|
11
|
Rathore V, Kachhvah AD, Jalan S. Catalytic feed-forward explosive synchronization in multilayer networks. CHAOS (WOODBURY, N.Y.) 2021; 31:123130. [PMID: 34972326 DOI: 10.1063/5.0060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Inhibitory couplings are crucial for the normal functioning of many real-world complex systems. Inhibition in one layer has been shown to induce explosive synchronization in another excitatory (or positive) layer of duplex networks. By extending this framework to multiplex networks, this article shows that inhibition in a single layer can act as a catalyst, leading to explosive synchronization transitions in the rest of the layers feed-forwarded through intermediate layer(s). Considering a multiplex network of coupled Kuramoto oscillators, we demonstrate that the characteristics of the transition emergent in a layer can be entirely controlled by the intra-layer coupling of other layers and the multiplexing strengths. The results presented here are essential to fathom the synchronization behavior of coupled dynamical units in multi-layer systems possessing inhibitory coupling in one of its layers, representing the importance of multiplexing.
Collapse
Affiliation(s)
- Vasundhara Rathore
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Ajay Deep Kachhvah
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sarika Jalan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
12
|
Roy M, Poria S, Hens C. Assortativity-induced explosive synchronization in a complex neuronal network. Phys Rev E 2021; 103:062307. [PMID: 34271687 DOI: 10.1103/physreve.103.062307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
In this study, we consider a scale-free network of nonidentical Chialvo neurons, coupled through electrical synapses. For sufficiently strong coupling, the system undergoes a transition from completely out of phase synchronized to phase synchronized state. The principal focus of this study is to investigate the effect of the degree of assortativity over the synchronization transition process. It is observed that, depending on assortativity, bistability between two asymptotically stable states allows one to develop a hysteresis loop which transforms the phase transition from second order to first order. An expansion in the area of hysteresis loop is noticeable with increasing degree-degree correlation in the network. Our study also reveals that effective frequencies of nodes simultaneously go through a continuous or sudden transition to the synchronized state with the corresponding phases. Further, we examine the robustness of the results under the effect of network size and average degree, as well as diverse frequency setup. Finally, we investigate the dynamical mechanism in the process of generating explosive synchronization. We observe a significant impact of lower degree nodes behind such phenomena: in a positive assortative network the low degree nodes delay the synchronization transition.
Collapse
Affiliation(s)
- Mousumi Roy
- Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Swarup Poria
- Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
13
|
Frolov N, Hramov A. Extreme synchronization events in a Kuramoto model: The interplay between resource constraints and explosive transitions. CHAOS (WOODBURY, N.Y.) 2021; 31:063103. [PMID: 34241300 DOI: 10.1063/5.0055156] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Many living and artificial systems possess structural and dynamical properties of complex networks. One of the most exciting living networked systems is the brain, in which synchronization is an essential mechanism of its normal functioning. On the other hand, excessive synchronization in neural networks reflects undesired pathological activity, including various forms of epilepsy. In this context, network-theoretical approach and dynamical modeling may uncover deep insight into the origins of synchronization-related brain disorders. However, many models do not account for the resource consumption needed for the neural networks to synchronize. To fill this gap, we introduce a phenomenological Kuramoto model evolving under the excitability resource constraints. We demonstrate that the interplay between increased excitability and explosive synchronization induced by the hierarchical organization of the network forces the system to generate short-living extreme synchronization events, which are well-known signs of epileptic brain activity. Finally, we establish that the network units occupying the medium levels of hierarchy most strongly contribute to the birth of extreme events emphasizing the focal nature of their origin.
Collapse
Affiliation(s)
- Nikita Frolov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Alexander Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| |
Collapse
|
14
|
Abstract
Hysteresis is ubiquitous in nature and biology. It appears in ferromagnetism, ferroelectrism, traffic congestion, river sedimentation, electronics, thermoresponses, cell division, differentiation, and apoptosis. Hysteresis phenomena are beyond equilibrium and involve nonlinear, bistable, time delay, and memory events, which are described in input/output profiles by different outputs during continuous decreases and increases in input intensity. Although hysteresis profiles in these phenomena appear similar, the mechanisms underlying them are complex, and their basic understanding is desired. In this Account, I describe thermal hysteresis caused by molecules dispersed in dilute solutions containing optically active helicene oligomers, which form homo- and heterodouble helices, the cooling and heating processes of which cause different structural changes with regard to their relative concentrations. Reversible self-catalytic reactions are involved in the formation of a double helix, which catalyzes its own formation. The reactions accelerate as they progress, in contrast to ordinary reactions, which exhibit monotonic retardation as they progress. Thermal hysteresis involving reversible self-catalytic reactions exhibits notable phenomena, when various cooling/heating inputs are applied during the reaction; these phenomena are shown herein with profiles of experimental results of Δε outputs obtained by circular dichroism (CD) plotted against temperature inputs. Thermal hysteresis is discussed in terms of (1) two states of the homodouble helix and a random coil involving one reversible self-catalytic reaction and (2) three states of enantiomeric heterodouble helices and a random coil involving two reversible self-catalytic reactions. Repeated cooling and heating processes provide the same stable thermal hysteresis loops, when the initial and final high-temperature states are under equilibrium, and nonloop and unstable thermal hysteresis appears when whole the systems are beyond equilibrium. Diverse thermal hysteresis loops are obtained under different temperature change conditions for different oligomers. The mechanism of thermal hysteresis involves different macroscopic mechanisms at a fixed temperature, when the relative concentrations of substrates/products and the reaction direction differ. Microscopic mechanisms, which are shown by energy diagrams, are fixed at a temperature irrespective of cooling or heating. A comparison of thermal hysteresis loops and equilibrium curves provides distances to the metastable states on the loops from equilibrium, and reactions occur from the metastable states toward equilibrium. Notable phenomena described herein include bistability, high sensitivity to small concentration changes, equilibrium crossing, three-state one-directional structural change caused by a single heating procedure, reaction shortcuts, the memory effect on thermal history, figure-eight thermal hysteresis, chemical oscillation, stable and unstable thermal hysteresis, double-helix formation only under heating, and chiral symmetry breaking.
Collapse
Affiliation(s)
- Masahiko Yamaguchi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
15
|
Shepelev IA, Muni SS, Schöll E, Strelkova GI. Repulsive inter-layer coupling induces anti-phase synchronization. CHAOS (WOODBURY, N.Y.) 2021; 31:063116. [PMID: 34241296 DOI: 10.1063/5.0054770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
We present numerical results for the synchronization phenomena in a bilayer network of repulsively coupled 2D lattices of van der Pol oscillators. We consider the cases when the network layers have either different or the same types of intra-layer coupling topology. When the layers are uncoupled, the lattice of van der Pol oscillators with a repulsive interaction typically demonstrates a labyrinth-like pattern, while the lattice with attractively coupled van der Pol oscillators shows a regular spiral wave structure. We reveal for the first time that repulsive inter-layer coupling leads to anti-phase synchronization of spatiotemporal structures for all considered combinations of intra-layer coupling. As a synchronization measure, we use the correlation coefficient between the symmetrical pairs of network nodes, which is always close to -1 in the case of anti-phase synchronization. We also study how the form of synchronous structures depends on the intra-layer coupling strengths when the repulsive inter-layer coupling is varied.
Collapse
Affiliation(s)
- Igor A Shepelev
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Sishu S Muni
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Galina I Strelkova
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
16
|
Kumar A, Jalan S. Explosive synchronization in interlayer phase-shifted Kuramoto oscillators on multiplex networks. CHAOS (WOODBURY, N.Y.) 2021; 31:041103. [PMID: 34251235 DOI: 10.1063/5.0043775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/19/2021] [Indexed: 06/13/2023]
Abstract
Different methods have been proposed in the past few years to incite explosive synchronization (ES) in Kuramoto phase oscillators. In this work, we show that the introduction of a phase shift α in interlayer coupling terms of a two-layer multiplex network of Kuramoto oscillators can also instigate ES in the layers. As α→π/2, ES emerges along with hysteresis. The width of hysteresis depends on the phase shift α, interlayer coupling strength, and natural frequency mismatch between mirror nodes. A mean-field analysis is performed to justify the numerical results. Similar to earlier works, the suppression of synchronization is accountable for the occurrence of ES. The robustness of ES against changes in network topology and natural frequency distribution is tested. Finally, taking a suggestion from the synchronized state of the multiplex networks, we extend the results to classical single networks where some specific links are assigned phase-shifted interactions.
Collapse
Affiliation(s)
- Anil Kumar
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sarika Jalan
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
17
|
Shepelev IA, Muni SS, Vadivasova TE. Synchronization of wave structures in a heterogeneous multiplex network of 2D lattices with attractive and repulsive intra-layer coupling. CHAOS (WOODBURY, N.Y.) 2021; 31:021104. [PMID: 33653058 DOI: 10.1063/5.0044327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
We explore numerically the synchronization effects in a heterogeneous two-layer network of two-dimensional (2D) lattices of van der Pol oscillators. The inter-layer coupling of the multiplex network has an attractive character. One layer of 2D lattices is characterized by attractive coupling of oscillators and demonstrates a spiral wave regime for both local and nonlocal interactions. The oscillators in the second layer are coupled through active elements and the interaction between them has repulsive character. We show that the lattice with the repulsive type of coupling demonstrates complex spatiotemporal cluster structures, which can be called labyrinth-like structures. We show for the first time that this multiplex network with fundamentally various types of intra-layer coupling demonstrates mutual synchronization and a competition between two types of structures. Our numerical study indicates that the synchronization threshold and the type of spatiotemporal patterns in both layers strongly depend on the ratio of the intra-layer coupling strength of the two lattices. We also analyze the impact of intra-layer coupling ranges on the synchronization effects.
Collapse
Affiliation(s)
- I A Shepelev
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - S S Muni
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - T E Vadivasova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
18
|
Frolov N, Maksimenko V, Majhi S, Rakshit S, Ghosh D, Hramov A. Chimera-like behavior in a heterogeneous Kuramoto model: The interplay between attractive and repulsive coupling. CHAOS (WOODBURY, N.Y.) 2020; 30:081102. [PMID: 32872824 DOI: 10.1063/5.0019200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Interaction within an ensemble of coupled nonlinear oscillators induces a variety of collective behaviors. One of the most fascinating is a chimera state that manifests the coexistence of spatially distinct populations of coherent and incoherent elements. Understanding of the emergent chimera behavior in controlled experiments or real systems requires a focus on the consideration of heterogeneous network models. In this study, we explore the transitions in a heterogeneous Kuramoto model under the monotonical increase of the coupling strength and specifically find that this system exhibits a frequency-modulated chimera-like pattern during the explosive transition to synchronization. We demonstrate that this specific dynamical regime originates from the interplay between (the evolved) attractively and repulsively coupled subpopulations. We also show that the above-mentioned chimera-like state is induced under weakly non-local, small-world, and sparse scale-free coupling and suppressed in globally coupled, strongly rewired, and dense scale-free networks due to the emergence of the large-scale connections.
Collapse
Affiliation(s)
- Nikita Frolov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Vladimir Maksimenko
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Alexander Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| |
Collapse
|
19
|
Rybalova E, Strelkova G, Schöll E, Anishchenko V. Relay and complete synchronization in heterogeneous multiplex networks of chaotic maps. CHAOS (WOODBURY, N.Y.) 2020; 30:061104. [PMID: 32611120 DOI: 10.1063/5.0008902] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
We study relay and complete synchronization in a heterogeneous triplex network of discrete-time chaotic oscillators. A relay layer and two outer layers, which are not directly coupled but interact via the relay layer, represent rings of nonlocally coupled two-dimensional maps. We consider for the first time the case when the spatiotemporal dynamics of the relay layer is completely different from that of the outer layers. Two different configurations of the triplex network are explored: when the relay layer consists of Lozi maps while the outer layers are given by Henon maps and vice versa. Phase and amplitude chimera states are observed in the uncoupled Henon map ring, while solitary state regimes are typical for the isolated Lozi map ring. We show for the first time relay synchronization of amplitude and phase chimeras, a solitary state chimera, and solitary state regimes in the outer layers. We reveal regimes of complete synchronization for the chimera structures and solitary state modes in all the three layers. We also analyze how the synchronization effects depend on the spatiotemporal dynamics of the relay layer and construct phase diagrams in the parameter plane of inter-layer vs intra-layer coupling strength of the relay layer.
Collapse
Affiliation(s)
- E Rybalova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - G Strelkova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - E Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - V Anishchenko
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|