Stock TJZ, Warschkow O, Constantinou PC, Bowler DR, Schofield SR, Curson NJ. Single-Atom Control of Arsenic Incorporation in Silicon for High-Yield Artificial Lattice Fabrication.
ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;
36:e2312282. [PMID:
38380859 PMCID:
PMC11475292 DOI:
10.1002/adma.202312282]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Artificial lattices constructed from individual dopant atoms within a semiconductor crystal hold promise to provide novel materials with tailored electronic, magnetic, and optical properties. These custom-engineered lattices are anticipated to enable new, fundamental discoveries in condensed matter physics and lead to the creation of new semiconductor technologies including analog quantum simulators and universal solid-state quantum computers. This work reports precise and repeatable, substitutional incorporation of single arsenic atoms into a silicon lattice. A combination of scanning tunneling microscopy hydrogen resist lithography and a detailed statistical exploration of the chemistry of arsine on the hydrogen-terminated silicon (001) surface are employed to show that single arsenic dopants can be deterministically placed within four silicon lattice sites and incorporated with 97 ± 2% yield. These findings bring closer to the ultimate frontier in semiconductor technology: the deterministic assembly of atomically precise dopant and qubit arrays at arbitrarily large scales.
Collapse