1
|
Lagoin C, Baldwin K, Pfeiffer L, Dubin F. Superlattice Quantum Solid of Dipolar Excitons. PHYSICAL REVIEW LETTERS 2024; 132:176001. [PMID: 38728707 DOI: 10.1103/physrevlett.132.176001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/01/2024] [Indexed: 05/12/2024]
Abstract
We study dipolar excitons confined at 330 mK in a square electrostatic lattice of a GaAs double quantum well. In the dipolar occupation blockade regime, at 3/2 filling, we evidence that excitons form a face-centered superlattice quantum solid. This phase is realized with high purity across 36 lattice sites, in a regime where the mean interaction energy exceeds the depth of the electrostatic lattice confinement. The superlattice solid then closely relates to Wigner crystals.
Collapse
Affiliation(s)
- Camille Lagoin
- CRHEA, CNRS and Université Côte d'Azur, Valbonne, France
- Institut des Nanosciences de Paris, CNRS and Sorbonne Université, Paris, France
| | - Kirk Baldwin
- PRISM, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey, USA
| | - Loren Pfeiffer
- PRISM, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey, USA
| | - François Dubin
- CRHEA, CNRS and Université Côte d'Azur, Valbonne, France
- Institut des Nanosciences de Paris, CNRS and Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Skrzyński G, Musial M. Benchmark Study of the Electronic States of the LiRb Molecule: Ab Initio Calculations with the Fock Space Coupled Cluster Approach. Molecules 2023; 28:7645. [PMID: 38005367 PMCID: PMC10675596 DOI: 10.3390/molecules28227645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Accurate potential energy curves (PECs) are determined for the twenty-two electronic states of LiRb. In contrast to previous studies, the applied approach relies on the first principle calculations involving correlation among all electrons. The current methodology is founded on the multireference coupled cluster (CC) scheme constructed within the Fock space (FS) formalism, specifically for the (2,0) sector. The FS methodology is established within the framework of the intermediate Hamiltonian formalism and offers an intruder-free, efficient computational scheme. This method has a distinctive feature that, when applied to the doubly ionized system, provides the characteristics of the neutral case. This proves especially beneficial when investigating PECs in situations where a closed-shell molecule dissociates into open-shell fragments, yet its double positive ion forms closed-shell species. In every instance, we successfully computed continuous PECs spanning the entire range of interatomic distances, from the equilibrium to the dissociation limit. Moreover, the spectroscopic characteristic of various electronic states is presented, including relativistic effects. Relativistic corrections included at the third-order Douglas-Kroll level have a non-negligible effect on the accuracy of the determined spectroscopic constants.
Collapse
Affiliation(s)
- Grzegorz Skrzyński
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Monika Musial
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
3
|
Karman T. Resonances in Non-universal Dipolar Collisions. J Phys Chem A 2023; 127:2194-2211. [PMID: 36825902 PMCID: PMC10009814 DOI: 10.1021/acs.jpca.3c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Scattering resonances due to the dipole-dipole interaction between ultracold molecules, induced by static or microwave fields, are studied theoretically. We develop a method for coupled-channel calculations that can efficiently impose many short-range boundary conditions, defined by a short-range phase shift and loss probability as in quantum defect theory. We study how resonances appear as the short-range loss probability is lowered below the universal unit probability. This may become realizable for nonreactive ultracold molecules in blue-detuned box potentials.
Collapse
Affiliation(s)
- Tijs Karman
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
4
|
Langin TK, Jorapur V, Zhu Y, Wang Q, DeMille D. Polarization Enhanced Deep Optical Dipole Trapping of Λ-Cooled Polar Molecules. PHYSICAL REVIEW LETTERS 2021; 127:163201. [PMID: 34723596 DOI: 10.1103/physrevlett.127.163201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate loading of SrF molecules into an optical dipole trap (ODT) via in-trap Λ-enhanced gray molasses cooling. We find that this cooling can be optimized by a proper choice of relative ODT and cooling beam polarizations. In this optimized configuration, we observe molecules with temperatures as low as 14(1) μK in traps with depths up to 570 μK. With optimized parameters, we transfer ∼5% of molecules from our radio-frequency magneto-optical trap into the ODT, at a density of ∼2×10^{9} cm^{-3}, a phase space density of ∼2×10^{-7}, and with a trap lifetime of ∼1 s.
Collapse
Affiliation(s)
- Thomas K Langin
- Department of Physics, Yale University, New Haven, Connecticut, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Varun Jorapur
- Department of Physics, Yale University, New Haven, Connecticut, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Yuqi Zhu
- Department of Physics, Yale University, New Haven, Connecticut, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Qian Wang
- Department of Physics, Yale University, New Haven, Connecticut, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - David DeMille
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
5
|
Yan ZZ, Park JW, Ni Y, Loh H, Will S, Karman T, Zwierlein M. Resonant Dipolar Collisions of Ultracold Molecules Induced by Microwave Dressing. PHYSICAL REVIEW LETTERS 2020; 125:063401. [PMID: 32845680 DOI: 10.1103/physrevlett.125.063401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate microwave dressing on ultracold, fermionic ^{23}Na^{40}K ground-state molecules and observe resonant dipolar collisions with cross sections exceeding 3 times the s-wave unitarity limit. The origin of these interactions is the resonant alignment of the approaching molecules' dipoles along the intermolecular axis, which leads to strong attraction. We explain our observations with a conceptually simple two-state picture based on the Condon approximation. Furthermore, we perform coupled-channel calculations that agree well with the experimentally observed collision rates. The resonant microwave-induced collisions found here enable controlled, strong interactions between molecules, of immediate use for experiments in optical lattices.
Collapse
Affiliation(s)
- Zoe Z Yan
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jee Woo Park
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Yiqi Ni
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Huanqian Loh
- Department of Physics and Centre for Quantum Technologies, National University of Singapore, 117543 Singapore
| | - Sebastian Will
- Department of Physics, Columbia University, New York 10027, USA
| | - Tijs Karman
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
| | - Martin Zwierlein
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Császár AG, Simkó I, Szidarovszky T, Groenenboom GC, Karman T, van der Avoird A. Rotational-vibrational resonance states. Phys Chem Chem Phys 2020; 22:15081-15104. [PMID: 32458891 DOI: 10.1039/d0cp00960a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resonance states are characterized by an energy that is above the lowest dissociation threshold of the potential energy hypersurface of the system and thus resonances have finite lifetimes. All molecules possess a large number of long- and short-lived resonance (quasibound) states. A considerable number of rotational-vibrational resonance states are accessible not only via quantum-chemical computations but also by spectroscopic and scattering experiments. In a number of chemical applications, most prominently in spectroscopy and reaction dynamics, consideration of rotational-vibrational resonance states is becoming more and more common. There are different first-principles techniques to compute and rationalize rotational-vibrational resonance states: one can perform scattering calculations or one can arrive at rovibrational resonances using variational or variational-like techniques based on methods developed for determining bound eigenstates. The latter approaches can be based either on the Hermitian (L2, square integrable) or non-Hermitian (non-L2) formalisms of quantum mechanics. This Perspective reviews the basic concepts related to and the relevance of shape and Feshbach-type rotational-vibrational resonance states, discusses theoretical methods and computational tools allowing their efficient determination, and shows numerical examples from the authors' previous studies on the identification and characterization of rotational-vibrational resonances of polyatomic molecular systems.
Collapse
Affiliation(s)
- Attila G Császár
- MTA-ELTE Complex Chemical Systems Research Group, P. O. Box 32, H-1518 Budapest 112, Hungary.
| | | | | | | | | | | |
Collapse
|
7
|
Anderegg L, Cheuk LW, Bao Y, Burchesky S, Ketterle W, Ni KK, Doyle JM. An optical tweezer array of ultracold molecules. Science 2019; 365:1156-1158. [DOI: 10.1126/science.aax1265] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/31/2019] [Indexed: 11/02/2022]
Abstract
Ultracold molecules have important applications that range from quantum simulation and computation to precision measurements probing physics beyond the Standard Model. Optical tweezer arrays of laser-cooled molecules, which allow control of individual particles, offer a platform for realizing this full potential. In this work, we report on creating an optical tweezer array of laser-cooled calcium monofluoride molecules. This platform has also allowed us to observe ground-state collisions of laser-cooled molecules both in the presence and absence of near-resonant light.
Collapse
|
8
|
González-Cuadra D, Grzybowski PR, Dauphin A, Lewenstein M. Strongly Correlated Bosons on a Dynamical Lattice. PHYSICAL REVIEW LETTERS 2018; 121:090402. [PMID: 30230886 DOI: 10.1103/physrevlett.121.090402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 05/28/2023]
Abstract
We study a one-dimensional system of strongly correlated bosons on a dynamical lattice. To this end, we extend the standard Bose-Hubbard Hamiltonian to include extra degrees of freedom on the bonds of the lattice. We show that this minimal model exhibits phenomena reminiscent of fermion-phonon models. In particular, we discover a bosonic analog of the Peierls transition, where the translational symmetry of the underlying lattice is spontaneously broken. This provides a dynamical mechanism to obtain a topological insulator in the presence of interactions, analogous to the Su-Schrieffer-Heeger model for electrons. We characterize the phase diagram numerically, showing different types of bond order waves and topological solitons. Finally, we study the possibility of implementing the model using atomic systems.
Collapse
Affiliation(s)
- Daniel González-Cuadra
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Barcelona, Spain
| | - Przemysław R Grzybowski
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Barcelona, Spain
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Alexandre Dauphin
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Barcelona, Spain
| | - Maciej Lewenstein
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
9
|
Cheuk LW, Anderegg L, Augenbraun BL, Bao Y, Burchesky S, Ketterle W, Doyle JM. Λ-Enhanced Imaging of Molecules in an Optical Trap. PHYSICAL REVIEW LETTERS 2018; 121:083201. [PMID: 30192609 DOI: 10.1103/physrevlett.121.083201] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 06/08/2023]
Abstract
We report on nondestructive imaging of optically trapped calcium monofluoride molecules using in situ Λ-enhanced gray molasses cooling. 200 times more fluorescence is obtained compared to destructive on-resonance imaging, and the trapped molecules remain at a temperature of 20 μK. The achieved number of scattered photons makes possible nondestructive single-shot detection of single molecules with high fidelity.
Collapse
Affiliation(s)
- Lawrence W Cheuk
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Loïc Anderegg
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Benjamin L Augenbraun
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Yicheng Bao
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Sean Burchesky
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Wolfgang Ketterle
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
10
|
Anderegg L, Augenbraun BL, Chae E, Hemmerling B, Hutzler NR, Ravi A, Collopy A, Ye J, Ketterle W, Doyle JM. Radio Frequency Magneto-Optical Trapping of CaF with High Density. PHYSICAL REVIEW LETTERS 2017; 119:103201. [PMID: 28949175 DOI: 10.1103/physrevlett.119.103201] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate significantly improved magneto-optical trapping of molecules using a very slow cryogenic beam source and either rf modulated or dc magnetic fields. The rf magneto-optical trap (MOT) confines 1.0(3)×10^{5} CaF molecules at a density of 7(3)×10^{6} cm^{-3}, which is an order of magnitude greater than previous molecular MOTs. Near Doppler-limited temperatures of 340(20) μK are attained. The achieved density enables future work to directly load optical tweezers and create optical arrays for quantum simulation.
Collapse
Affiliation(s)
- Loïc Anderegg
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Benjamin L Augenbraun
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Eunmi Chae
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Boerge Hemmerling
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Nicholas R Hutzler
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Aakash Ravi
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Alejandra Collopy
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
| | - Jun Ye
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
| | - Wolfgang Ketterle
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
11
|
|
12
|
Phonon-mediated repulsion, sharp transitions and (quasi)self-trapping in the extended Peierls-Hubbard model. Sci Rep 2017; 7:1169. [PMID: 28446754 PMCID: PMC5430795 DOI: 10.1038/s41598-017-01228-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/14/2017] [Indexed: 11/08/2022] Open
Abstract
We study two identical fermions, or two hard-core bosons, in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. We show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. This illustrates that, depending on the strength of the phonon-mediated interactions, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles.
Collapse
|
13
|
Cao L, Mistakidis SI, Deng X, Schmelcher P. Collective excitations of dipolar gases based on local tunneling in superlattices. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Stevenson IC, Blasing DB, Altaf A, Chen YP, Elliott DS. The d 3Π state of LiRb. J Chem Phys 2016; 145:224301. [PMID: 27984909 DOI: 10.1063/1.4964655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report our spectroscopic studies of the d 3Π state of ultra-cold 7Li85Rb using resonantly enhanced multi-photon ionization and depletion spectroscopy with bound-to-bound transitions originating from the metastable a 3Σ+ state. We evaluate the potential of this state for use as the intermediate state in a stimulated-Raman-adiabatic-passage transfer scheme from triplet Feshbach LiRb molecules to the X 1Σ+ ground state and find that the lowest several vibrational levels possess the requisite overlap with initial and final states, as well as convenient energies. Using depletion measurements, we measured the well depth and spin-orbit splitting. We suggest possible pathways for short-range photoassociation using deeply bound vibrational levels of this electronic state.
Collapse
Affiliation(s)
- I C Stevenson
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - D B Blasing
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - A Altaf
- Intel Corp., Portland, Oregon 97124, USA
| | - Y P Chen
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - D S Elliott
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
15
|
Quench field sensitivity of two-particle correlation in a Hubbard model. Sci Rep 2016; 6:27189. [PMID: 27250080 PMCID: PMC4890018 DOI: 10.1038/srep27189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/16/2016] [Indexed: 11/24/2022] Open
Abstract
Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one- dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelated particle states is sensitive to the quench field strength and exhibits a periodic behavior. This process involves an irreversible energy transfer from the field to particles, leading to a quantum electrothermal effect.
Collapse
|
16
|
Lechner W, Büchler HP, Zoller P. Role of quantum fluctuations in the hexatic phase of cold polar molecules. PHYSICAL REVIEW LETTERS 2014; 112:255301. [PMID: 25014821 DOI: 10.1103/physrevlett.112.255301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 06/03/2023]
Abstract
Two-dimensional crystals melt via an intermediate hexatic phase, which is characterized by an anomalous scaling of spatial and orientational correlation functions and the absence of an attraction between dislocations. We propose a protocol to study the effect of quantum fluctuations on the nature of this phase with a model system of strongly correlated ultracold polar molecules. Dislocations can be located in experiment from local energy differences which induce internal stark shifts in the molecules. We present a criterion to identify the hexatic phase from the statistics of the end points of topological defect strings and find a hexatic phase, which is dominated by quantum fluctuations, between the crystal and superfluid phases.
Collapse
Affiliation(s)
- Wolfgang Lechner
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, 6020 Innsbruck, Austria and Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Hans-Peter Büchler
- Institute for Theoretical Physics III, University of Stuttgart, D-70550 Stuttgart, Germany
| | - Peter Zoller
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, 6020 Innsbruck, Austria and Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
17
|
Krois G, Pototschnig JV, Lackner F, Ernst WE. Spectroscopy of cold LiCa molecules formed on helium nanodroplets. J Phys Chem A 2013; 117:13719-31. [PMID: 24028555 PMCID: PMC3871282 DOI: 10.1021/jp407818k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/11/2013] [Indexed: 11/30/2022]
Abstract
We report on the formation of mixed alkali-alkaline earth molecules (LiCa) on helium nanodroplets and present a comprehensive experimental and theoretical study of the ground and excited states of LiCa. Resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy were used for the experimental investigation of LiCa from 15000 to 25500 cm(-1). The 4(2)Σ(+) and 3(2)Π states show a vibrational structure accompanied by distinct phonon wings, which allows us to determine molecular parameters as well as to study the interaction of the molecule with the helium droplet. Higher excited states (4(2)Π, 5(2)Σ(+), 5(2)Π, and 6(2)Σ(+)) are not vibrationally resolved and vibronic transitions start to overlap. The experimental spectrum is well reproduced by high-level ab initio calculations. By using a multireference configuration interaction (MRCI) approach, we calculated the 19 lowest lying potential energy curves (PECs) of the LiCa molecule. On the basis of these calculations, we could identify previously unobserved transitions. Our results demonstrate that the helium droplet isolation approach is a powerful method for the characterization of tailor-made alkali-alkaline earth molecules. In this way, important contributions can be made to the search for optimal pathways toward the creation of ultracold alkali-alkaline earth ground state molecules from the corresponding atomic species. Furthermore, a test for PECs calculated by ab initio methods is provided.
Collapse
Affiliation(s)
- Günter Krois
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Johann V. Pototschnig
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Florian Lackner
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Wolfgang E. Ernst
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| |
Collapse
|
18
|
Matveeva N, Giorgini S. Impurity problem in a bilayer system of dipoles. PHYSICAL REVIEW LETTERS 2013; 111:220405. [PMID: 24329430 DOI: 10.1103/physrevlett.111.220405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/15/2013] [Indexed: 06/03/2023]
Abstract
We consider a bilayer geometry where a single impurity moves in a two-dimensional plane and is coupled, via dipolar interactions, to a two-dimensional system of fermions residing in the second layer. Dipoles in both layers point in the same direction oriented by an external field perpendicular to the plane of motion. We use quantum Monte Carlo methods to calculate the binding energy and the effective mass of the impurity at zero temperature as a function of the distance between layers as well as of the in-plane interaction strength. In the regime where the fermionic dipoles form a Wigner crystal, the physics of the impurity can be described in terms of a polaron coupled to the bath of lattice phonons. By reducing the distance between layers this polaron exhibits a crossover from a free-moving to a tightly bound regime where its effective mass is orders of magnitude larger than the bare mass.
Collapse
Affiliation(s)
- N Matveeva
- Dipartimento di Fisica, Università di Trento and CNR-INO BEC Center, I-38050 Povo, Trento, Italy
| | - S Giorgini
- Dipartimento di Fisica, Università di Trento and CNR-INO BEC Center, I-38050 Povo, Trento, Italy
| |
Collapse
|
19
|
Gopalakrishnan S, Martin I, Demler EA. Quantum quasicrystals of spin-orbit-coupled dipolar bosons. PHYSICAL REVIEW LETTERS 2013; 111:185304. [PMID: 24237533 DOI: 10.1103/physrevlett.111.185304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Indexed: 06/02/2023]
Abstract
We study quasi-two-dimensional dipolar Bose gases in which the bosons experience a Rashba spin-orbit coupling. We show that the degenerate dispersion minimum due to the spin-orbit coupling, combined with the long-range dipolar interaction, can stabilize a number of quantum crystalline and quasicrystalline ground states. Coupling the bosons to a fermionic species can further stabilize these phases. We estimate that the crystalline and quasicrystalline phases should be detectable in realistic dipolar condensates, e.g., dysprosium, and discuss their symmetries and excitations.
Collapse
|
20
|
Lechner W, Zoller P. From classical to quantum glasses with ultracold polar molecules. PHYSICAL REVIEW LETTERS 2013; 111:185306. [PMID: 24237535 DOI: 10.1103/physrevlett.111.185306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Indexed: 06/02/2023]
Abstract
We study the dynamics of a bilayer system of ultracold polar molecules, which exhibits classical and quantum glassy behavior, characterized by long tails in the relaxation time and dynamical heterogeneity. In the proposed setup, quantum fluctuations are of the order of thermal fluctuations and the degree of frustration can be tuned by the interlayer distance. We discuss the possible observation of a glassy anomalous diffusion and dynamical heterogeneity in experiment using internal degrees of freedom of the molecules in combination with optical detection.
Collapse
Affiliation(s)
- Wolfgang Lechner
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, 6020 Innsbruck, Austria and Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | | |
Collapse
|
21
|
Caracanhas MA, Bagnato VS, Pereira RG. Tkachenko polarons in vortex lattices. PHYSICAL REVIEW LETTERS 2013; 111:115304. [PMID: 24074103 DOI: 10.1103/physrevlett.111.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Indexed: 06/02/2023]
Abstract
We analyze the properties of impurities immersed in a vortex lattice formed by ultracold bosons in the mean field quantum Hall regime. In addition to the effects of a periodic lattice potential, the impurity is dressed by collective modes with parabolic dispersion (Tkachenko modes). We derive the effective polaron model, which contains a marginal impurity-phonon interaction. The polaron spectral function exhibits a Lorentzian broadening for arbitrarily small wave vectors even at zero temperature, in contrast with the result for optical or acoustic phonons. The anomalous damping of Tkachenko polarons could be detected experimentally using momentum-resolved spectroscopy.
Collapse
Affiliation(s)
- M A Caracanhas
- Instituto de Física de São Carlos, Universidade de São Paulo, C.P. 369, São Carlos, São Paulo 13560-970, Brazil
| | | | | |
Collapse
|
22
|
Bissbort U, Cocks D, Negretti A, Idziaszek Z, Calarco T, Schmidt-Kaler F, Hofstetter W, Gerritsma R. Emulating solid-state physics with a hybrid system of ultracold ions and atoms. PHYSICAL REVIEW LETTERS 2013; 111:080501. [PMID: 24010420 DOI: 10.1103/physrevlett.111.080501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 06/02/2023]
Abstract
We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of high fidelity operations and detection offered by trapped ion systems with ultracold atomic systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian, including the atomic band structure, and give an expression for the atom-phonon coupling. We discuss possible experimental implementations such as a Peierls-like transition into a period-doubled dimerized state.
Collapse
Affiliation(s)
- U Bissbort
- Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, 60438 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Stuhl BK, Hummon MT, Yeo M, Quéméner G, Bohn JL, Ye J. Evaporative cooling of the dipolar hydroxyl radical. Nature 2012; 492:396-400. [DOI: 10.1038/nature11718] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/26/2012] [Indexed: 12/12/2022]
|
24
|
Ulmanis J, Deiglmayr J, Repp M, Wester R, Weidemüller M. Ultracold Molecules Formed by Photoassociation: Heteronuclear Dimers, Inelastic Collisions, and Interactions with Ultrashort Laser Pulses. Chem Rev 2012; 112:4890-927. [PMID: 22931226 DOI: 10.1021/cr300215h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juris Ulmanis
- Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Philosophenweg
12, 69120 Heidelberg, Germany
| | - Johannes Deiglmayr
- Laboratorium für Physikalische
Chemie, ETH Zürich, Wolfgang-Pauli-Strasse
10, 8093 Zürich, Switzerland
| | - Marc Repp
- Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Philosophenweg
12, 69120 Heidelberg, Germany
| | - Roland Wester
- Institut für Ionenphysik
und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria
| | - Matthias Weidemüller
- Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Philosophenweg
12, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Baranov MA, Dalmonte M, Pupillo G, Zoller P. Condensed Matter Theory of Dipolar Quantum Gases. Chem Rev 2012; 112:5012-61. [DOI: 10.1021/cr2003568] [Citation(s) in RCA: 480] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. A. Baranov
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
- RRC “Kurchatov Institute”,
Kurchatov Square 1, 123182, Moscow, Russia
| | - M. Dalmonte
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Dipartimento di Fisica dell’Università
di Bologna, via Irnerio 46, 40126 Bologna, Italy
| | - G. Pupillo
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
- ISIS (UMR 7006) and IPCMS (UMR
7504), Université de Strasbourg and CNRS, Strasbourg, France
| | - P. Zoller
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
26
|
Wakim A, Zabawa P, Haruza M, Bigelow NP. Luminorefrigeration: vibrational cooling of NaCs. OPTICS EXPRESS 2012; 20:16083-16091. [PMID: 22772299 DOI: 10.1364/oe.20.016083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We demonstrate the use of optical pumping of kinetically ultracold NaCs to cool an initial vibrational distribution of electronic ground state molecules X(1)Σ(+)(v ≥ 4) into the vibrational ground state X(1)Σ(+)(v=0). Our approach is based on the use of simple, commercially available multimode diode lasers selected to optically pump population into X(1)Σ(+)(v=0). We investigate the impact of the cooling process on the rotational state distribution of the vibrational ground state, and observe that an initial distribution, J(initial)=0-2 is only moderately affected resulting in J(final)=0-4. This method provides an inexpensive approach to creation of vibrational ground state ultracold polar molecules.
Collapse
Affiliation(s)
- A Wakim
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | |
Collapse
|
27
|
Sowiński T, Dutta O, Hauke P, Tagliacozzo L, Lewenstein M. Dipolar molecules in optical lattices. PHYSICAL REVIEW LETTERS 2012; 108:115301. [PMID: 22540482 DOI: 10.1103/physrevlett.108.115301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Indexed: 05/31/2023]
Abstract
We study the extended Bose-Hubbard model describing an ultracold gas of dipolar molecules in an optical lattice, taking into account all on-site and nearest-neighbor interactions, including occupation-dependent tunneling and pair tunneling terms. Using exact diagonalization and the multiscale entanglement renormalization ansatz, we show that these terms can destroy insulating phases and lead to novel quantum phases. These considerable changes of the phase diagram have to be taken into account in upcoming experiments with dipolar molecules.
Collapse
Affiliation(s)
- Tomasz Sowiński
- Institute of Physics of the Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
28
|
Deiglmayr J, Repp M, Grochola A, Mörtlbauer K, Glück C, Dulieu O, Lange J, Wester R, Weidemüller M. Formation of ultracold dipolar molecules in the lowest vibrational levels by photoassociation. Faraday Discuss 2009; 142:335-49; discussion 429-61. [DOI: 10.1039/b818391k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Ni KK, Ospelkaus S, Nesbitt DJ, Ye J, Jin DS. A dipolar gas of ultracold molecules. Phys Chem Chem Phys 2009; 11:9626-39. [DOI: 10.1039/b911779b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R, Weidemüller M. Formation of ultracold polar molecules in the rovibrational ground state. PHYSICAL REVIEW LETTERS 2008; 101:133004. [PMID: 18851445 DOI: 10.1103/physrevlett.101.133004] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Indexed: 05/26/2023]
Abstract
Ultracold LiCs molecules in the absolute ground state X1Sigma+, v'' = 0, J'' = 0 are formed via a single photoassociation step starting from laser-cooled atoms. The selective production of v'' = 0, J'' = 2 molecules with a 50-fold higher rate is also demonstrated. The rotational and vibrational state of the ground state molecules is determined in a setup combining depletion spectroscopy with resonant-enhanced multiphoton ionization time-of-flight spectroscopy. Using the determined production rate of up to 5 x 10(3) molecules/s, we describe a simple scheme which can provide large samples of externally and internally cold dipolar molecules.
Collapse
Affiliation(s)
- J Deiglmayr
- Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|