1
|
Kuang X, Pantaleón Peralta PA, Angel Silva-Guillén J, Yuan S, Guinea F, Zhan Z. Optical properties and plasmons in moiré structures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:173001. [PMID: 38232397 DOI: 10.1088/1361-648x/ad1f8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The discoveries of numerous exciting phenomena in twisted bilayer graphene (TBG) are stimulating significant investigations on moiré structures that possess a tunable moiré potential. Optical response can provide insights into the electronic structures and transport phenomena of non-twisted and twisted moiré structures. In this article, we review both experimental and theoretical studies of optical properties such as optical conductivity, dielectric function, non-linear optical response, and plasmons in moiré structures composed of graphene, hexagonal boron nitride (hBN), and/or transition metal dichalcogenides. Firstly, a comprehensive introduction to the widely employed methodology on optical properties is presented. After, moiré potential induced optical conductivity and plasmons in non-twisted structures are reviewed, such as single layer graphene-hBN, bilayer graphene-hBN and graphene-metal moiré heterostructures. Next, recent investigations of twist-angle dependent optical response and plasmons are addressed in twisted moiré structures. Additionally, we discuss how optical properties and plasmons could contribute to the understanding of the many-body effects and superconductivity observed in moiré structures.
Collapse
Affiliation(s)
- Xueheng Kuang
- Yangtze Delta Industrial Innovation Center of Quantum Science and Technology, Suzhou 215000, People's Republic of China
| | | | - Jose Angel Silva-Guillén
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Francisco Guinea
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 San Sebastián, Spain
| | - Zhen Zhan
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
2
|
Lin X, Liu Z, Stauber T, Gómez-Santos G, Gao F, Chen H, Zhang B, Low T. Chiral Plasmons with Twisted Atomic Bilayers. PHYSICAL REVIEW LETTERS 2020; 125:077401. [PMID: 32857562 DOI: 10.1103/physrevlett.125.077401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
van der Waals heterostructures of atomically thin layers with rotational misalignments, such as twisted bilayer graphene, feature interesting structural moiré superlattices. Because of the quantum coupling between the twisted atomic layers, light-matter interaction is inherently chiral; as such, they provide a promising platform for chiral plasmons in the extreme nanoscale. However, while the interlayer quantum coupling can be significant, its influence on chiral plasmons still remains elusive. Here we present the general solutions from full Maxwell equations of chiral plasmons in twisted atomic bilayers, with the consideration of interlayer quantum coupling. We find twisted atomic bilayers have a direct correspondence to the chiral metasurface, which simultaneously possesses chiral and magnetic surface conductivities, besides the common electric surface conductivity. In other words, the interlayer quantum coupling in twisted van der Waals heterostructures may facilitate the construction of various (e.g., bi-anisotropic) atomically-thin metasurfaces. Moreover, the chiral surface conductivity, determined by the interlayer quantum coupling, determines the existence of chiral plasmons and leads to a unique phase relationship (i.e., ±π/2 phase difference) between their transverse-electric (TE) and transverse-magnetic (TM) wave components. Importantly, such a unique phase relationship for chiral plasmons can be exploited to construct the missing longitudinal spin of plasmons, besides the common transverse spin of plasmons.
Collapse
Affiliation(s)
- Xiao Lin
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zifei Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Tobias Stauber
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain
- Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Guillermo Gómez-Santos
- Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Fei Gao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, ZJU-UIUC Institute, Zhejiang University, Haining 314400, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, NTU, Singapore 637371, Singapore
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
3
|
Zhang F, Zhou J, Xiao D, Yao Y. Tunable Intrinsic Plasmons due to Band Inversion in Topological Materials. PHYSICAL REVIEW LETTERS 2017; 119:266804. [PMID: 29328685 DOI: 10.1103/physrevlett.119.266804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Band inversion has led to rich physical effects in both topological insulators and topological semimetals. It has been found that the inverted band structure with the Mexican-hat dispersion could enhance the interband correlation leading to a strong intrinsic plasmon excitation. Its frequency ranges from several meV to tens of meV and can be effectively tuned by the external fields. The electron-hole asymmetric term splits the peak of the plasmon excitation into double peaks. The fate and properties of this plasmon excitation can also act as a probe to characterize the topological phases even in lightly doped systems. We numerically demonstrate the impact of band inversion on plasmon excitations in magnetically doped thin films of three-dimensional strong topological insulators, V- or Cr-doped (Bi,Sb)_{2}Te_{3}, which support the quantum anomalous Hall states. Our work thus sheds some new light on the potential applications of topological materials in plasmonics.
Collapse
Affiliation(s)
- Furu Zhang
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jianhui Zhou
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Di Xiao
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Yugui Yao
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z. Plasmonics of 2D Nanomaterials: Properties and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600430. [PMID: 28852608 PMCID: PMC5566264 DOI: 10.1002/advs.201600430] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/12/2016] [Indexed: 05/05/2023]
Abstract
Plasmonics has developed for decades in the field of condensed matter physics and optics. Based on the classical Maxwell theory, collective excitations exhibit profound light-matter interaction properties beyond classical physics in lots of material systems. With the development of nanofabrication and characterization technology, ultra-thin two-dimensional (2D) nanomaterials attract tremendous interest and show exceptional plasmonic properties. Here, we elaborate the advanced optical properties of 2D materials especially graphene and monolayer molybdenum disulfide (MoS2), review the plasmonic properties of graphene, and discuss the coupling effect in hybrid 2D nanomaterials. Then, the plasmonic tuning methods of 2D nanomaterials are presented from theoretical models to experimental investigations. Furthermore, we reveal the potential applications in photocatalysis, photovoltaics and photodetections, based on the development of 2D nanomaterials, we make a prospect for the future theoretical physics and practical applications.
Collapse
Affiliation(s)
- Yu Li
- School of PhysicsState Key Lab for Mesoscopic PhysicsPeking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Ziwei Li
- School of PhysicsState Key Lab for Mesoscopic PhysicsPeking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Cheng Chi
- School of PhysicsState Key Lab for Mesoscopic PhysicsPeking UniversityBeijing100871China
| | - Hangyong Shan
- School of PhysicsState Key Lab for Mesoscopic PhysicsPeking UniversityBeijing100871China
| | - Liheng Zheng
- School of PhysicsState Key Lab for Mesoscopic PhysicsPeking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Zheyu Fang
- School of PhysicsState Key Lab for Mesoscopic PhysicsPeking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- Collaborative Innovation Center of Quantum MatterPeking UniversityBeijing100871China
| |
Collapse
|
5
|
Zheng Z, Wang W, Ma T, Deng Z, Ke Y, Zhan R, Zou Q, Ren W, Chen J, She J, Zhang Y, Liu F, Chen H, Deng S, Xu N. Chemically-doped graphene with improved surface plasmon characteristics: an optical near-field study. NANOSCALE 2016; 8:16621-30. [PMID: 27503188 DOI: 10.1039/c6nr04239b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
One of the most fascinating and important merits of graphene plasmonics is their tunability over a wide range. While chemical doping has proven to be a facile and effective way to create graphene plasmons, most of the previous studies focused on the macroscopic behaviors of the plasmons in chemically-doped graphene and little was known about their nanoscale responses and related mechanisms. Here, to the best of our knowledge, we present the first experimental near-field optical study on chemically-doped graphene with improved surface plasmon characteristics. By using a scattering-type scanning near-field optical microscope (s-SNOM), we managed to show that the graphene plasmons can be tuned and improved using a facile chemical doping method. Specifically, the plasmon interference patterns near the edge of the monolayer graphene were substantially enhanced via nitric acid (HNO3) exposure. The plasmon-related characteristics can be deduced by analyzing such plasmonic fringes, which exhibited a longer plasmon wavelength and reduced plasmon damping rate. In addition, the local carrier density and therefore the Fermi energy level (EF) of graphene can be obtained from the plasmonic nano-imaging, which indicated that the enhanced plasmon oscillation originated from the injection of free holes into graphene by HNO3. These findings were further corroborated by theoretical calculations using density functional theory (DFT). We believe that our findings provide a clear nanoscale picture on improving graphene plasmonics by chemical doping, which will be helpful for optimizing graphene plasmonics and for elucidating the mechanisms of two-dimensional light confinement by atomically thick materials.
Collapse
Affiliation(s)
- Zebo Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kharzeev DE, Pisarski RD, Yee HU. Universality of Plasmon Excitations in Dirac Semimetals. PHYSICAL REVIEW LETTERS 2015; 115:236402. [PMID: 26684129 DOI: 10.1103/physrevlett.115.236402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 06/05/2023]
Abstract
We investigate the properties of the collective plasmon excitations in Dirac semimetals by using the methods of relativistic field theory. We find a strong and narrow plasmon excitation whose frequency is in the terahertz (THz) range which may be important for practical applications. The properties of the plasmon appear universal for all Dirac semimetals, due to the large degeneracy of the quasiparticles and the small Fermi velocity, v_{F}≪c. This universality is closely analogous to the phenomenon of "dimensional transmutation" that is responsible for the emergence of dimensionful scales in relativistic field theories such as quantum chromodynamics.
Collapse
Affiliation(s)
- Dmitri E Kharzeev
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
- Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Robert D Pisarski
- Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA
- RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - Ho-Ung Yee
- RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
- Physics Department, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
7
|
Stauber T. Plasmonics in Dirac systems: from graphene to topological insulators. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:123201. [PMID: 24598974 DOI: 10.1088/0953-8984/26/12/123201] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recent developments in the emerging field of plasmonics in graphene and other Dirac systems are reviewed and a comprehensive introduction to the standard models and techniques is given. In particular, we discuss intrinsic plasmon excitation of single and bilayer graphene via hydrodynamic equations and the random phase approximation, but also comment on double and multilayer structures. Additionally, we address Dirac systems in the retardation limit and also with large spin–orbit coupling including topological insulators. Finally, we summarize basic properties of the charge, current and photon linear response functions in an appendix.
Collapse
|
8
|
Juergens S, Michetti P, Trauzettel B. Plasmons due to the interplay of Dirac and Schrödinger fermions. PHYSICAL REVIEW LETTERS 2014; 112:076804. [PMID: 24579625 DOI: 10.1103/physrevlett.112.076804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Indexed: 06/03/2023]
Abstract
We study the interplay between Dirac and Schrödinger fermions in the polarization properties of a two-dimensional electron gas (2DEG). Specifically, we analyze the low-energy sector of narrow-gap semiconductors described by a two-band Kane model. In the context of quantum spin Hall insulators, particularly, in Hg(Cd)Te quantum wells, this model is named the Bernevig-Hughes-Zhang model. Interestingly, it describes electrons with intermediate properties between Dirac and Schrödinger fermions. We calculate the dynamical dielectric function of such a model at zero temperature within random phase approximation. Surprisingly, plasmon resonances are found in the intrinsic (undoped) limit, whereas they are absent-in that limit-in graphene as well as ordinary 2DEGs. Additionally, we demonstrate that the optical conductivity offers a quantitative way to identify the topological phase of Hg(Cd)Te quantum wells from a bulk measurement.
Collapse
Affiliation(s)
- Stefan Juergens
- Institute of Theoretical Physics and Astrophysics, University of Würzburg, D-97074 Würzburg, Germany
| | - Paolo Michetti
- Institute of Theoretical Physics and Astrophysics, University of Würzburg, D-97074 Würzburg, Germany
| | - Björn Trauzettel
- Institute of Theoretical Physics and Astrophysics, University of Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
9
|
Shanmugam V, Selvakumar S, Yeh CS. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 2014; 43:6254-87. [DOI: 10.1039/c4cs00011k] [Citation(s) in RCA: 638] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Near-infrared light sensitive nanomaterials provide ideal nanoplatforms in site specific noninvasive cancer therapy.
Collapse
Affiliation(s)
| | - S. Selvakumar
- Department of Chemistry, Center for Micro/Nano Science and Technology
- and Advanced Optoelectronic Technology Center
- National Cheng Kung University
- Tainan 701, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, Center for Micro/Nano Science and Technology
- and Advanced Optoelectronic Technology Center
- National Cheng Kung University
- Tainan 701, Taiwan
| |
Collapse
|
10
|
Andersen DR, Raza H. Collective modes of massive Dirac fermions in armchair graphene nanoribbons. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:045303. [PMID: 23257918 DOI: 10.1088/0953-8984/25/4/045303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report the plasmon dispersion characteristics of intrinsic and extrinsic armchair graphene nanoribbons of atomic width N = 5 using a p(z)-orbital tight binding model with third-nearest-neighbor (3nn) coupling. The hopping parameters are obtained by fitting the 3nn dispersions to those of an extended Hückel theory. The resultant massive Dirac fermion system has a band gap E(g) ≈ 64 meV. The extrinsic plasmon dispersion relation is found to asymptotically approach a universal dispersion curve as the chemical potential μ increases, whereas the intrinsic plasmon dispersion relation is found to have both energy and momentum thresholds. We also report an analytical model for the extrinsic plasmon group velocity in the q → 0 limit.
Collapse
Affiliation(s)
- David R Andersen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
11
|
Horing NJM. Aspects of the theory of graphene. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:5525-5556. [PMID: 21041228 DOI: 10.1098/rsta.2010.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Following a brief review of the device-friendly features of graphene, recent work on its Green's functions with and without a normal magnetic field are discussed, for an infinite graphene sheet and also for a quantum dot, with analyses of the Landau-quantized energy spectra of the sheet and dot. The random phase approximation dielectric response of graphene is reviewed and discussed in connection with the van der Waals interactions of a graphene sheet with atoms/molecules and with a second graphene sheet in a double layer. Energy-loss spectroscopy for a graphene sheet subject to both parallel and perpendicular particle probes of its dynamic, non-local response properties are also treated. Furthermore, we discuss recent work on the coupling of a graphene plasmon and a surface plasmon, yielding a collective plasma mode that is linear in wavenumber. Finally, we discuss the unusual aspects of graphene conduction and recent work on diffusive charge transport in graphene, in both the DC and AC regimes.
Collapse
|
12
|
Mishchenko EG, Shytov AV, Silvestrov PG. Guided plasmons in graphene p-n junctions. PHYSICAL REVIEW LETTERS 2010; 104:156806. [PMID: 20482009 DOI: 10.1103/physrevlett.104.156806] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Indexed: 05/29/2023]
Abstract
Spatial separation of electrons and holes in graphene gives rise to the existence of plasmon waves confined to the boundary region. A theory of such guided plasmon modes within hydrodynamics of electron-hole liquid is developed. For plasmon wavelengths smaller than the size of charged domains, plasmon dispersion is found to be omega proportional to q(1/4). The frequency, velocity, and direction of propagation of guided plasmon modes can be easily controlled by the external electric field. In the presence of a magnetic field, a spectrum of additional gapless magnetoplasmon excitations is obtained. Our findings indicate that graphene is a promising material for nanoplasmonics.
Collapse
Affiliation(s)
- E G Mishchenko
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
13
|
Bahraminasab A, Ghasemi F, Stefanovska A, McClintock PVE, Friedrich R. Physics of brain dynamics: Fokker-Planck analysis reveals changes in EEG delta and theta activity during anaesthesia. NEW JOURNAL OF PHYSICS 2009. [PMID: 20823955 DOI: 10.1088/1367-2630/11/9/095011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We use drift and diffusion coefficients to reveal interactions between different oscillatory processes underlying a complex signal and apply the method to EEG delta and theta frequencies in the brain. By analysis of data recorded from rats during anaesthesia we consider the stability and basins of attraction of fixed points in the phase portrait of the deterministic part of the retrieved stochastic process. We show that different classes of dynamics are associated with deep and light anaesthesia, and we demonstrate that the predominant directionality of the interaction is such that theta drives delta.
Collapse
Affiliation(s)
- A Bahraminasab
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK, ; ;
| | | | | | | | | |
Collapse
|
14
|
Pyatkovskiy PK. Dynamical polarization, screening, and plasmons in gapped graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:025506. [PMID: 21813983 DOI: 10.1088/0953-8984/21/2/025506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The one-loop polarization function of graphene has been calculated at zero temperature for arbitrary wavevector, frequency, chemical potential (doping), and band gap. The result is expressed in terms of elementary functions and is used to find the dispersion of the plasmon mode and the static screening within the random phase approximation. At long wavelengths the usual square root behaviour of plasmon spectra for two-dimensional (2D) systems is obtained. The presence of a small (compared to a chemical potential) gap leads to the appearance of a new undamped plasmon mode. At greater values of the gap this mode merges with the long-wavelength one, and vanishes when the Fermi level enters the gap. The screening of charged impurities at large distances differs from that in gapless graphene by slower decay of Friedel oscillations (1/r(2) instead of 1/r(3)), similarly to conventional 2D systems.
Collapse
Affiliation(s)
- P K Pyatkovskiy
- Physics Department, Kyiv National Taras Shevchenko University, Academician Glushkov Avenue 2, Kyiv, 03127, Ukraine
| |
Collapse
|
15
|
González J, Perfetto E. Unconventional quasiparticle lifetime in graphene. PHYSICAL REVIEW LETTERS 2008; 101:176802. [PMID: 18999770 DOI: 10.1103/physrevlett.101.176802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Indexed: 05/27/2023]
Abstract
We address the question of how large can the lifetime of electronic states be at low energies in graphene, below the scale of the optical phonon modes. For this purpose, we study the many-body effects at the K point of the spectrum, which induce a strong coupling between electron-hole pairs and out-of-plane phonons. We show the existence of a soft branch of hybrid states below the electron-hole continuum when graphene is close to the charge neutrality point, leading to an inverse lifetime proportional to the cube of the quasiparticle energy. This implies that a crossover should be observed in transport properties, from such a slow decay rate to the lower bound given at very low energies by the decay into acoustic phonons.
Collapse
Affiliation(s)
- J González
- Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
| | | |
Collapse
|