1
|
Levy AL, Zimmerman NM. Broadband Microwave Electrical Transport Spectroscopy for Two-Dimensional Material Systems. JOURNAL OF APPLIED PHYSICS 2022; 131:10.1063/5.0087285. [PMID: 38524783 PMCID: PMC10960354 DOI: 10.1063/5.0087285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
In recent years, interesting materials have emerged which are only available as μm-scale flakes, and whose novel physics might be better understood through broadband microwave spectroscopy; examples include twisted bilayer graphene [Y. Cao S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras and P. Jarillo-Herrero Nature 556, 43 (2018).], 2D materials in which many-body phases are observed [S. Chen R. Ribeiro-Palau, K. Yang, T. Taniguchi, J. Hone, M. O. Goerbig and C. R. Dean Physical Review Letters 122¸ 026802 (2019)], and artificial lattices for analog quantum simulations [J. Salfi J. A. Mol, R. Rahman, G. Klimeck, M. Y. Simmons, L. C. L. Hollenberg and S. Rogge Nature Communications 7, 1 (2016)]. Most previous techniques are unfortunately not sensitive for flakes below mm lateral sizes. We propose a simple technique which does not require sophisticated sample preparation nor Ohmic contact and show through theory and simulations that one will be able to qualitatively measure spectral features of interest, and quantitatively measure the frequency-dependent complex conductivity.
Collapse
Affiliation(s)
- Antonio L. Levy
- Physical Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, 20899-8171, USA
| | - Neil M. Zimmerman
- Physical Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, 20899-8171, USA
| |
Collapse
|
2
|
Bennaceur K, Lupien C, Reulet B, Gervais G, Pfeiffer LN, West KW. Competing Charge Density Waves Probed by Nonlinear Transport and Noise in the Second and Third Landau Levels. PHYSICAL REVIEW LETTERS 2018; 120:136801. [PMID: 29694212 DOI: 10.1103/physrevlett.120.136801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 06/08/2023]
Abstract
Charge density waves (CDWs) in the second and third Landau levels (LLs) are investigated by both nonlinear electronic transport and noise. The use of a Corbino geometry ensures that only bulk properties are probed, with no contribution from edge states. Sliding transport of CDWs is revealed by narrow band noise in reentrant quantum Hall states R2a and R2c of the second LL, as well as in pinned CDWs of the third LL. Competition between various phases-stripe, pinned CDW, or fractional quantum Hall liquid-in both LLs are clearly revealed by combining noise data with maps of conductivity versus magnetic field and bias voltage.
Collapse
Affiliation(s)
- K Bennaceur
- Département de Physique et Institut Quantique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Department of Physics, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
- Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| | - C Lupien
- Département de Physique et Institut Quantique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - B Reulet
- Département de Physique et Institut Quantique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - G Gervais
- Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
3
|
Friess B, Umansky V, von Klitzing K, Smet JH. Current Flow in the Bubble and Stripe Phases. PHYSICAL REVIEW LETTERS 2018; 120:137603. [PMID: 29694187 DOI: 10.1103/physrevlett.120.137603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 06/08/2023]
Abstract
The spontaneous ordering of spins and charges in geometric patterns is currently under scrutiny in a number of different material systems. A topic of particular interest is the interaction of such ordered phases with itinerant electrons driven by an externally imposed current. It not only provides important information on the charge ordering itself but potentially also allows manipulating the shape and symmetry of the underlying pattern if current flow is strong enough. Unfortunately, conventional transport methods probing the macroscopic resistance suffer from the fact that the voltage drop along the sample edges provides only indirect information on the bulk properties because a complex current distribution is elicited by the inhomogeneous ground state. Here, we promote the use of surface acoustic waves to study these broken-symmetry phases and specifically address the bubble and stripe phases emerging in high-quality two-dimensional electron systems in GaAs/AlGaAs heterostructures as prototypical examples. When driving a unidirectional current, we find a surprising discrepancy between the sound propagation probing the bulk of the sample and the voltage drop along the sample edges. Our results prove that the current-induced modifications observed in resistive transport measurements are in fact a local phenomenon only, leaving the majority of the sample unaltered. More generally, our findings shed new light on the extent to which these ordered electron phases are impacted by an external current and underline the intrinsic advantages of acoustic measurements for the study of such inhomogeneous phases.
Collapse
Affiliation(s)
- B Friess
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - V Umansky
- Braun Centre for Semiconductor Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - K von Klitzing
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - J H Smet
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| |
Collapse
|
4
|
Mueed MA, Hossain MS, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Reorientation of the Stripe Phase of 2D Electrons by a Minute Density Modulation. PHYSICAL REVIEW LETTERS 2016; 117:076803. [PMID: 27563985 DOI: 10.1103/physrevlett.117.076803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 06/06/2023]
Abstract
Interacting two-dimensional electrons confined in a GaAs quantum well exhibit isotropic transport when the Fermi level resides in the first excited (N=1) Landau level. Adding an in-plane magnetic field (B_{||}) typically leads to an anisotropic, stripelike (nematic) phase of electrons with the stripes oriented perpendicular to the B_{||} direction. Our experimental data reveal how a periodic density modulation, induced by a surface strain grating from strips of negative electron-beam resist, competes against the B_{||}-induced orientational order of the stripe phase. Even a minute (<0.25%) density modulation is sufficient to reorient the stripes along the direction of the surface grating.
Collapse
Affiliation(s)
- M A Mueed
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Md Shafayat Hossain
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
5
|
Olson Reichhardt CJ, Reichhardt C, Bishop AR. Anisotropic sliding dynamics, peak effect, and metastability in stripe systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:041501. [PMID: 21599163 DOI: 10.1103/physreve.83.041501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Indexed: 05/30/2023]
Abstract
A variety of soft and hard condensed matter systems are known to form stripe patterns. Here we use numerical simulations to analyze how such stripe states depin and slide when interacting with a random substrate and with driving in different directions with respect to the orientation of the stripes. Depending on the strength and density of the substrate disorder, we find that there can be pronounced anisotropy in the transport produced by different dynamical flow phases. We also find a disorder-induced "peak effect" similar to that observed for superconducting vortex systems, which is marked by a transition from elastic depinning to a state where the stripe structure fragments or partially disorders at depinning. Under the sudden application of a driving force, we observe pronounced metastability effects similar to those found near the order-disorder transition associated with the peak effect regime for three-dimensional superconducting vortices. The characteristic transient time required for the system to reach a steady state diverges in the region where the flow changes from elastic to disordered. We also find that anisotropy of the flow persists in the presence of thermal disorder when thermally induced particle hopping along the stripes dominates. The thermal effects can wash out the effects of the quenched disorder, leading to a thermally induced stripe state. We map out the dynamical phase diagram for this system, and discuss how our results could be explored in electron liquid crystal systems, type-1.5 superconductors, and pattern-forming colloidal assemblies.
Collapse
Affiliation(s)
- C J Olson Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | |
Collapse
|
6
|
Zhu H, Sambandamurthy G, Engel LW, Tsui DC, Pfeiffer LN, West KW. Pinning mode resonances of 2D electron stripe phases: effect of an in-plane magnetic field. PHYSICAL REVIEW LETTERS 2009; 102:136804. [PMID: 19392387 DOI: 10.1103/physrevlett.102.136804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Indexed: 05/27/2023]
Abstract
We study the anisotropic pinning-mode resonances in the rf conductivity spectra of the stripe phase of 2D electron systems around a Landau level filling of 9/2, in the presence of an in-plane magnetic field B(ip). The polarization along which the resonance is observed switches as B(ip) is applied, consistent with the reorientation of the stripes. The resonance frequency, a measure of the pinning interaction between the 2D electron systems and disorder, increases with B(ip). The magnitude of this increase indicates that disorder interaction is playing an important role in determining the stripe orientation.
Collapse
Affiliation(s)
- Han Zhu
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | |
Collapse
|