1
|
Atac H, Constantinou M, Meziani ZE, Paolone M, Sparveris N. Measurement of the neutron charge radius and the role of its constituents. Nat Commun 2021; 12:1759. [PMID: 33741952 PMCID: PMC7979702 DOI: 10.1038/s41467-021-22028-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/22/2021] [Indexed: 11/24/2022] Open
Abstract
The neutron is a cornerstone in our depiction of the visible universe. Despite the neutron zero-net electric charge, the asymmetric distribution of the positively- (up) and negatively-charged (down) quarks, a result of the complex quark-gluon dynamics, lead to a negative value for its squared charge radius, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle$$\end{document}⟨rn2⟩. The precise measurement of the neutron’s charge radius thus emerges as an essential part of unraveling its structure. Here we report on a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle$$\end{document}⟨rn2⟩ measurement, based on the extraction of the neutron electric form factor, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${G}_{{\rm{E}}}^{{\rm{n}}}$$\end{document}GEn, at low four-momentum transfer squared (Q2) by exploiting the long known connection between the N → Δ quadrupole transitions and the neutron electric form factor. Our result, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle =-0.110\pm 0.008\,({{\rm{fm}}}^{2})$$\end{document}⟨rn2⟩=−0.110±0.008(fm2), addresses long standing unresolved discrepancies in the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle$$\end{document}⟨rn2⟩ determination. The dynamics of the strong nuclear force can be viewed through the precise picture of the neutron’s constituent distributions that result into the non-zero \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle$$\end{document}⟨rn2⟩ value. The charge radius of nucleons provides information about their structure. Here the authors present a method, based values of neutron electric form factors, to determine the charge radius of the neutron and provide information on improving the uncertainty of neutron charge radius measurements
Collapse
Affiliation(s)
- H Atac
- Temple University, Philadelphia, PA, USA
| | | | - Z-E Meziani
- Temple University, Philadelphia, PA, USA.,Argonne National Laboratory, Lemont, IL, USA
| | - M Paolone
- New Mexico State University, Las Cruces, NM, USA
| | | |
Collapse
|
3
|
DeGrush A, Maschinot A, Akdogan T, Alarcon R, Bertozzi W, Booth E, Botto T, Calarco JR, Clasie B, Crawford C, Dow K, Farkhondeh M, Fatemi R, Filoti O, Franklin W, Gao H, Geis E, Gilad S, Hasell DK, Karpius P, Kohl M, Kolster H, Lee T, Matthews J, McIlhany K, Meitanis N, Milner R, Rapaport J, Redwine R, Seely J, Shinozaki A, Sindile A, Širca S, Six E, Smith T, Tonguc B, Tschalär C, Tsentalovich E, Turchinetz W, Xiao Y, Xu W, Zhou ZL, Ziskin V, Zwart T. Measurement of the Vector and Tensor Asymmetries at Large Missing Momentum in Quasielastic (e[over →],e^{'}p) Electron Scattering from Deuterium. PHYSICAL REVIEW LETTERS 2017; 119:182501. [PMID: 29219591 DOI: 10.1103/physrevlett.119.182501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 06/07/2023]
Abstract
We report the measurement of the beam-vector and tensor asymmetries A_{ed}^{V} and A_{d}^{T} in quasielastic (e[over →],e^{'}p) electrodisintegration of the deuteron at the MIT-Bates Linear Accelerator Center up to missing momentum of 500 MeV/c. Data were collected simultaneously over a momentum transfer range 0.1<Q^{2}<0.5 (GeV/c)^{2} with the Bates Large Acceptance Spectrometer Toroid using an internal deuterium gas target polarized sequentially in both vector and tensor states. The data are compared with calculations. The beam-vector asymmetry A_{ed}^{V} is found to be directly sensitive to the D-wave component of the deuteron and has a zero crossing at a missing momentum of about 320 MeV/c, as predicted. The tensor asymmetry A_{d}^{T} at large missing momentum is found to be dominated by the influence of the tensor force in the neutron-proton final-state interaction. The new data provide a strong constraint on theoretical models.
Collapse
Affiliation(s)
- A DeGrush
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A Maschinot
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T Akdogan
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R Alarcon
- Arizona State University, Tempe, Arizona 85287, USA
| | - W Bertozzi
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - E Booth
- Boston University, Boston, Massachusetts 02215, USA
| | - T Botto
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J R Calarco
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - B Clasie
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - C Crawford
- University of Kentucky, Lexington, Kentucky 40504, USA
| | - K Dow
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - M Farkhondeh
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R Fatemi
- University of Kentucky, Lexington, Kentucky 40504, USA
| | - O Filoti
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - W Franklin
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - H Gao
- Triangle Universities Nuclear Laboratory and Duke University, Durham, North Carolina 27708, USA
| | - E Geis
- Arizona State University, Tempe, Arizona 85287, USA
| | - S Gilad
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - D K Hasell
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - P Karpius
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - M Kohl
- Hampton University, Hampton, Virginia 23668, USA and Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - H Kolster
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T Lee
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - J Matthews
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - K McIlhany
- United States Naval Academy, Annapolis, Maryland 21402, USA
| | - N Meitanis
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R Milner
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J Rapaport
- Ohio University, Athens, Ohio 45701, USA
| | - R Redwine
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J Seely
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A Shinozaki
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A Sindile
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - S Širca
- Faculty of Mathematics and Physics, University of Ljubljana, and Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - E Six
- Arizona State University, Tempe, Arizona 85287, USA
| | - T Smith
- Dartmouth College, Hanover, New Hampshire 03755, USA
| | - B Tonguc
- Arizona State University, Tempe, Arizona 85287, USA
| | - C Tschalär
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - E Tsentalovich
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - W Turchinetz
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Y Xiao
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - W Xu
- Triangle Universities Nuclear Laboratory and Duke University, Durham, North Carolina 27708, USA
| | - Z-L Zhou
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - V Ziskin
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T Zwart
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Schlimme BS, Achenbach P, Ayerbe Gayoso CA, Bernauer JC, Böhm R, Bosnar D, Challand T, Distler MO, Doria L, Fellenberger F, Fonvieille H, Gómez Rodríguez M, Grabmayr P, Hehl T, Heil W, Kiselev D, Krimmer J, Makek M, Merkel H, Middleton DG, Müller U, Nungesser L, Ott BA, Pochodzalla J, Potokar M, Sánchez Majos S, Sargsian MM, Sick I, Sirca S, Weinriefer M, Wendel M, Yoon CJ. Measurement of the neutron electric to magnetic form factor ratio at Q2=1.58 GeV2 using the reaction 3He[over →](e[over →],e'n)pp. PHYSICAL REVIEW LETTERS 2013; 111:132504. [PMID: 24116774 DOI: 10.1103/physrevlett.111.132504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Indexed: 06/02/2023]
Abstract
A measurement of beam helicity asymmetries in the reaction 3He[over →](e[over →],e'n)pp is performed at the Mainz Microtron in quasielastic kinematics to determine the electric to magnetic form factor ratio of the neutron GEn/GMn at a four-momentum transfer Q2=1.58 GeV2. Longitudinally polarized electrons are scattered on a highly polarized 3He gas target. The scattered electrons are detected with a high-resolution magnetic spectrometer, and the ejected neutrons are detected with a dedicated neutron detector composed of scintillator bars. To reduce systematic errors, data are taken for four different target polarization orientations allowing the determination of GEn/GMn from a double ratio. We find μnGEn/GMn=0.250±0.058(stat)±0.017(syst).
Collapse
Affiliation(s)
- B S Schlimme
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang C, Kohl M, Akdogan T, Alarcon R, Bertozzi W, Booth E, Botto T, Calarco JR, Clasie B, Crawford C, DeGrush A, Dow K, Farkhondeh M, Fatemi R, Filoti O, Franklin W, Gao H, Geis E, Gilad S, Hasell D, Karpius P, Kolster H, Lee T, Maschinot A, Matthews J, McIlhany K, Meitanis N, Milner R, Rapaport J, Redwine R, Seely J, Shinozaki A, Sindile A, Širca S, Six E, Smith T, Tonguc B, Tschalär C, Tsentalovich E, Turchinetz W, Xiao Y, Xu W, Zhou ZL, Ziskin V, Zwart T. Precise measurement of deuteron tensor analyzing powers with BLAST. PHYSICAL REVIEW LETTERS 2011; 107:252501. [PMID: 22243068 DOI: 10.1103/physrevlett.107.252501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Indexed: 05/31/2023]
Abstract
We report a precision measurement of the deuteron tensor analyzing powers T(20) and T(21) at the MIT-Bates Linear Accelerator Center. Data were collected simultaneously over a momentum transfer range Q=2.15-4.50 fm(-1) with the Bates Large Acceptance Spectrometer Toroid using a highly polarized deuterium internal gas target. The data are in excellent agreement with calculations in a framework of effective field theory. The deuteron charge monopole and quadrupole form factors G(C) and G(Q) were separated with improved precision, and the location of the first node of G(C) was confirmed at Q=4.19±0.05 fm(-1). The new data provide a strong constraint on theoretical models in a momentum transfer range covering the minimum of T(20) and the first node of G(C).
Collapse
Affiliation(s)
- C Zhang
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|