1
|
Naritsuka M, Terashima T, Matsuda Y. Controlling unconventional superconductivity in artificially engineered f-electron Kondo superlattices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:273001. [PMID: 33946054 DOI: 10.1088/1361-648x/abfdf2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Unconventional superconductivity and magnetism are intertwined on a microscopic level in a wide class of materials, including high-Tccuprates, iron pnictides, and heavy-fermion compounds. Interactions between superconducting electrons and bosonic fluctuations at the interface between adjacent layers in heterostructures provide a new approach to this most fundamental and hotly debated subject. We have been able to use a recent state-of-the-art molecular-beam-epitaxy technique to fabricate superlattices consisting of different heavy-fermion compounds with atomic thickness. These Kondo superlattices provide a unique opportunity to study the mutual interaction between unconventional superconductivity and magnetic order through the atomic interface. Here, we design and fabricate hybrid Kondo superlattices consisting of alternating layers of superconducting CeCoIn5withd-wave pairing symmetry and nonmagnetic metal YbCoIn5or antiferromagnetic heavy fermion metals such as CeRhIn5and CeIn3. In these Kondo superlattices, superconducting heavy electrons are confined within the two-dimensional CeCoIn5block layers and interact with neighboring nonmagnetic or magnetic layers through the interface. Superconductivity is strongly influenced by local inversion symmetry breaking at the interface in CeCoIn5/YbCoIn5superlattices. The superconducting and antiferromagnetic states coexist in spatially separated layers in CeCoIn5/CeRhIn5and CeCoIn5/CeIn3superlattices, but their mutual coupling via the interface significantly modifies the superconducting and magnetic properties. The fabrication of a wide variety of hybrid superlattices paves a new way to study the relationship between unconventional superconductivity and magnetism in strongly correlated materials.
Collapse
Affiliation(s)
- M Naritsuka
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - T Terashima
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Y Matsuda
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Competing magnetic orders in the superconducting state of heavy-fermion CeRhIn 5. Proc Natl Acad Sci U S A 2017; 114:5384-5388. [PMID: 28487488 DOI: 10.1073/pnas.1703016114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Applied pressure drives the heavy-fermion antiferromagnet CeRhIn5 toward a quantum critical point that becomes hidden by a dome of unconventional superconductivity. Magnetic fields suppress this superconducting dome, unveiling the quantum phase transition of local character. Here, we show that [Formula: see text] magnetic substitution at the Ce site in CeRhIn5, either by Nd or Gd, induces a zero-field magnetic instability inside the superconducting state. This magnetic state not only should have a different ordering vector than the high-field local-moment magnetic state, but it also competes with the latter, suggesting that a spin-density-wave phase is stabilized in zero field by Nd and Gd impurities, similarly to the case of Ce0.95Nd0.05CoIn5 Supported by model calculations, we attribute this spin-density wave instability to a magnetic-impurity-driven condensation of the spin excitons that form inside the unconventional superconducting state.
Collapse
|
3
|
Ptok A. Multiple phase transitions in Pauli-limited iron-based superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:482001. [PMID: 26569450 DOI: 10.1088/0953-8984/27/48/482001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Specific heat measurements have been successfully used to probe unconventional superconducting phases in one-band heavy-fermion and organic superconductors. We extend the method to study successive phase transitions in multi-band materials such as iron-based superconductors. The signatures are multiple peaks in the specific heat, at low temperatures and high magnetic field, which can lead to the experimental verification of unconventional superconducting states with non-zero total momentum.
Collapse
Affiliation(s)
- Andrzej Ptok
- Institute of Nuclear Physics, Polish Academy of Sciences, ul Radzikowskiego 152, PL-31-342 Kraków, Poland
| |
Collapse
|
4
|
Das T, Vorontsov AB, Vekhter I, Graf MJ. Role of the Fermi-surface anisotropy in angle-dependent magnetic-field oscillations for identifying the energy-gap anisotropy of A(y)Fe(2)Se(2) superconductors. PHYSICAL REVIEW LETTERS 2012; 109:187006. [PMID: 23215321 DOI: 10.1103/physrevlett.109.187006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Indexed: 06/01/2023]
Abstract
We present a numerical study of the field-angle resolved oscillations of the thermal conductivity and specific heat under a rotated magnetic field in the A(y)Fe(2-x)Se(2) [A = K, Rb, Cs, (Tl, K)] superconductors, using realistic two-band Fermi surface parametrization. Our key finding is that even for isotropic pairing on an anisotropic Fermi surface, the thermodynamic quantities exhibit substantial oscillatory behavior in the superconducting state, even much below the upper critical field. Furthermore, in multiband systems the competition of anisotropies between two Fermi surfaces can cause a double sign reversal of oscillations as a function of temperature, irrespective of gap anisotropy. Our findings put severe constraints on simple interpretations of field-angle resolved measurements widely used to identify the angular structure of the superconducting gap.
Collapse
Affiliation(s)
- Tanmoy Das
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | |
Collapse
|
5
|
Ronning F, Zhu JX, Das T, Graf MJ, Albers RC, Rhee HB, Pickett WE. Superconducting gap structure of the 115s revisited. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:294206. [PMID: 22773378 DOI: 10.1088/0953-8984/24/29/294206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Density functional theory calculations of the electronic structure of Ce- and Pu-based heavy fermion superconductors in the so-called 115 family are performed. The gap equation is used to consider which superconducting order parameters are most favorable assuming a pairing interaction that is peaked at (π, π, qz)—the wavevector for the antiferromagnetic ordering found in close proximity. In addition to the commonly accepted dx2−y2 order parameter, there is evidence that an extended s-wave order parameter with nodes is also plausible. We discuss whether these results are consistent with current observations and possible measurements that could help distinguish between these scenarios.
Collapse
Affiliation(s)
- F Ronning
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Lu X, Lee H, Park T, Ronning F, Bauer ED, Thompson JD. Heat-capacity measurements of energy-gap nodes of the heavy-fermion superconductor CeIrIn5 deep inside the pressure-dependent dome structure of its superconducting phase diagram. PHYSICAL REVIEW LETTERS 2012; 108:027001. [PMID: 22324705 DOI: 10.1103/physrevlett.108.027001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Indexed: 05/31/2023]
Abstract
We use heat-capacity measurements as a function of field rotation to identify the nodal gap structure of CeIrIn(5) at pressures to 2.05 GPa, deep inside its superconducting dome. A fourfold oscillation in the heat capacity at 0.3 K is observed for all pressures, but with its sign reversed between 1.50 and 0.90 GPa. On the basis of recent theoretical models for the field-angle-dependent specific heat, all data, including the sign reversal, imply a d(x(2)-y(2)) order parameter with nodes along [110], which constrains theoretical models of the pairing mechanism in CeIrIn(5).
Collapse
Affiliation(s)
- Xin Lu
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | |
Collapse
|
7
|
Zeng B, Mu G, Luo H, Xiang T, Mazin I, Yang H, Shan L, Ren C, Dai P, Wen HH. Anisotropic structure of the order parameter in FeSe(0.45)Te(0.55) revealed by angle-resolved specific heat. Nat Commun 2010; 1:112. [PMID: 21081910 PMCID: PMC3066551 DOI: 10.1038/ncomms1115] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 10/18/2010] [Indexed: 11/09/2022] Open
Abstract
The central issues for understanding iron (Fe)-based superconductors are the symmetry and structure of the superconducting gap. So far the experimental data and theoretical models have been highly controversial. Some experiments favor two or more constant or nearly constant gaps, others indicate strong anisotropy and yet others suggest gap zeros ('nodes'). A unique method for addressing this issue, and one of very few methods that are bulk and angle resolved, is measuring the electronic-specific heat in a rotating magnetic field. In this study, we present the first such measurement for an Fe-based high-T(c) superconductor. We observed a fourfold oscillation of the specific heat as a function of the in-plane magnetic field direction. Our results are consistent with the expectations for an extended s-wave model, with a significant gap anisotropy on the electron pockets and the gap minima along the ΓM (Fe-Fe bond) direction.
Collapse
Affiliation(s)
- B. Zeng
- National Laboratory for Superconductivity, Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - G. Mu
- National Laboratory for Superconductivity, Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - H.Q. Luo
- National Laboratory for Superconductivity, Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - T. Xiang
- National Laboratory for Superconductivity, Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - I.I. Mazin
- Code 6391, Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - H. Yang
- National Laboratory for Superconductivity, Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - L. Shan
- National Laboratory for Superconductivity, Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - C. Ren
- National Laboratory for Superconductivity, Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - P.C. Dai
- National Laboratory for Superconductivity, Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA
- Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6393, USA
| | - H.-H. Wen
- National Laboratory for Superconductivity, Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
8
|
An K, Sakakibara T, Settai R, Onuki Y, Hiragi M, Ichioka M, Machida K. Sign reversal of field-angle resolved heat capacity oscillations in a heavy Fermion superconductor CeCoIn5 and d{x{2}-y{2}} pairing symmetry. PHYSICAL REVIEW LETTERS 2010; 104:037002. [PMID: 20366675 DOI: 10.1103/physrevlett.104.037002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Indexed: 05/29/2023]
Abstract
To identify the superconducting gap symmetry in CeCoIn5 (T{c}=2.3 K), we measured the angle-resolved specific heat (C{phi}) in a field rotated around the c axis down to a very low temperature, 0.05T{c}, and made detailed theoretical calculations. In a field of 1 T, a sign reversal of the fourfold angular oscillation in C{phi} was observed at T approximately 0.1T{c} upon entering a quasiclassical regime where the maximum of C{phi} corresponds to the antinodal direction, coinciding with the angle-resolved density of states (ADOS) calculation. The C{phi} behavior, which exhibits minima along the [110] directions, unambiguously allows us to conclude d{x{2}-y{2}} symmetry of this system. The ADOS-quasiclassical region is confined to a narrow T and H domain within T/T{c} approximately 0.1 and 1.5 T (0.13H{c2}).
Collapse
Affiliation(s)
- K An
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | | | | | | | | | | | | |
Collapse
|