1
|
Lam MA, Khusid B, Kondic L, Meyer WV. Role of diffusion in crystallization of hard-sphere colloids. Phys Rev E 2021; 104:054607. [PMID: 34942784 DOI: 10.1103/physreve.104.054607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/12/2021] [Indexed: 11/07/2022]
Abstract
Vital for a variety of industries, colloids also serve as an excellent model to probe phase transitions at the individual particle level. Despite extensive studies, origins of the glass transition in hard-sphere colloids discovered about 30 y ago remain elusive. Results of our numerical simulations and asymptotic analysis suggest that cessation of long-time particle diffusivity does not suppress crystallization of a metastable liquid-phase hard-sphere colloid. Once a crystallite forms, its growth is then controlled by the particle diffusion in the depletion zone surrounding the crystallite. Using simulations, we evaluate the solid-liquid interface mobility from data on colloidal crystallization in terrestrial and microgravity experiments and demonstrate that there is no drastic difference between the respective mobility values. The insight into the effect of vanishing particle mobility and particle sedimentation on crystallization of colloids will help engineer colloidal materials with controllable structure.
Collapse
Affiliation(s)
- Michael A Lam
- New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Boris Khusid
- New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Lou Kondic
- New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - William V Meyer
- Universities Space Research Association at NASA Glenn Research Center, Cleveland, Ohio 44135, USA
| |
Collapse
|
2
|
Smith GN, Derry MJ, Hallett JE, Lovett JR, Mykhaylyk OO, Neal TJ, Prévost S, Armes SP. Refractive index matched, nearly hard polymer colloids. Proc Math Phys Eng Sci 2019; 475:20180763. [PMID: 31293354 DOI: 10.1098/rspa.2018.0763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/09/2019] [Indexed: 11/12/2022] Open
Abstract
Refractive index matched particles serve as essential model systems for colloid scientists, providing nearly hard spheres to explore structure and dynamics. The poly(methyl methacrylate) latexes typically used are often refractive index matched by dispersing them in binary solvent mixtures, but this can lead to undesirable changes, such as particle charging or swelling. To avoid these shortcomings, we have synthesized refractive index matched colloids using polymerization-induced self-assembly (PISA) rather than as polymer latexes. The crucial difference is that these diblock copolymer nanoparticles consist of a single core-forming polymer in a single non-ionizable solvent. The diblock copolymer chosen was poly(stearyl methacrylate)-poly(2,2,2-trifluoroethyl methacrylate) (PSMA-PTFEMA), which self-assembles to form PTFEMA core spheres in n-alkanes. By monitoring scattered light intensity, n-tetradecane was found to be the optimal solvent for matching the refractive index of such nanoparticles. As expected for PISA syntheses, the diameter of the colloids can be controlled by varying the PTFEMA degree of polymerization. Concentrated dispersions were prepared, and the diffusion of the PSMA-PTFEMA nanoparticles as a function of volume fraction was measured. These diblock copolymer nanoparticles are a promising new system of transparent spheres for future colloidal studies.
Collapse
Affiliation(s)
- Gregory N Smith
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Matthew J Derry
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - James E Hallett
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1FD, UK
| | - Joseph R Lovett
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | | | - Thomas J Neal
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Sylvain Prévost
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Steven P Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| |
Collapse
|
3
|
Niu R, Heidt S, Sreij R, Dekker RI, Hofmann M, Palberg T. Formation of a transient amorphous solid in low density aqueous charged sphere suspensions. Sci Rep 2017; 7:17044. [PMID: 29213089 PMCID: PMC5719089 DOI: 10.1038/s41598-017-17106-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/22/2017] [Indexed: 11/09/2022] Open
Abstract
Colloidal glasses formed from hard spheres, nearly hard spheres, ellipsoids and platelets or their attractive variants, have been studied in great detail. Complementing and constraining theoretical approaches and simulations, the many different types of model systems have significantly advanced our understanding of the glass transition in general. Despite their early prediction, however, no experimental charged sphere glasses have been found at low density, where the competing process of crystallization prevails. We here report the formation of a transient amorphous solid formed from charged polymer spheres suspended in thoroughly deionized water at volume fractions of 0.0002-0.01. From optical experiments, we observe the presence of short-range order and an enhanced shear rigidity as compared to the stable polycrystalline solid of body centred cubic structure. On a density dependent time scale of hours to days, the amorphous solid transforms into this stable structure. We further present preliminary dynamic light scattering data showing the evolution of a second slow relaxation process possibly pointing to a dynamic heterogeneity known from other colloidal glasses and gels. We compare our findings to the predicted phase behaviour of charged sphere suspensions and discuss possible mechanisms for the formation of this peculiar type of colloidal glass.
Collapse
Affiliation(s)
- Ran Niu
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany.
| | - Sabrina Heidt
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany
- Graduate School Materials Science in Mainz, Staudinger Weg 9, D-55128, Mainz, Germany
| | - Ramsia Sreij
- Department of Chemistry Physical and Biophysical Chemistry (PC III), Bielefeld University, D-33615, Bielefeld, Germany
| | - Riande I Dekker
- Debye Institute for Nanomaterials Science, Utrecht University, NL-3584 CC, Utrecht, The Netherlands
| | - Maximilian Hofmann
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany
| | - Thomas Palberg
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany
| |
Collapse
|
4
|
Hannam SDW, Daivis PJ, Bryant G. Dramatic slowing of compositional relaxations in the approach to the glass transition for a bimodal colloidal suspension. Phys Rev E 2017; 96:022609. [PMID: 28950635 DOI: 10.1103/physreve.96.022609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Indexed: 11/07/2022]
Abstract
Molecular dynamics simulation was used to study a model colloidal suspension with two species of slightly different sized colloidal particles in an explicit solvent. In this work we calculated the four interdiffusion coefficients for the ternary system, which were then used to calculate the decay coefficients D_{±} of the two independent diffusive modes. We found that the slower D_{-} decay mode, which is associated with the system's ability to undergo compositional changes, was responsible for the long-time decay in the intermediate scattering function. We also found that a decrease in D_{-} to negligible values at a packing fraction of Φ_{g}=0.592 resulted in an extreme slow-down in the long-time decay of the intermediate scattering function often associated with the glass transition. Above Φ_{g}, the system formed a long-lived metastable state that did not relax to its equilibrium crystal state within the simulation time window. We concluded that the inhibition of crystallization was caused by the inability of the quenched fluid to undergo the compositional changes needed for the formation of the equilibrium crystal.
Collapse
Affiliation(s)
- S D W Hannam
- School of Science and Centre for Molecular and Nanoscale Physics, RMIT University, G. P. O. Box 2476, Melbourne, Victoria 3001, Australia
| | - P J Daivis
- School of Science and Centre for Molecular and Nanoscale Physics, RMIT University, G. P. O. Box 2476, Melbourne, Victoria 3001, Australia
| | - G Bryant
- School of Science and Centre for Molecular and Nanoscale Physics, RMIT University, G. P. O. Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
5
|
|
6
|
Hannam S, Daivis P, Bryant G. Molecular dynamics simulation study of the static and dynamic properties of a model colloidal suspension with explicit solvent. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1066505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Exposing a dynamical signature of the freezing transition through the sound propagation gap. Nat Commun 2014; 5:5503. [PMID: 25429604 DOI: 10.1038/ncomms6503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/07/2014] [Indexed: 11/08/2022] Open
Abstract
The conventional view of freezing holds that nuclei of the crystal phase form in the metastable fluid through purely stochastic thermal density fluctuations. The possibility of a change in the character of the fluctuations as the freezing point is traversed is beyond the scope of this perspective. Here we show that this perspective may be incomplete by examination of the time autocorrelation function of the longitudinal current, computed by molecular dynamics for the hard-sphere fluid around its freezing point. In the spatial window where sound is overdamped, we identify a change in the long-time decay of the correlation function at the known freezing points of monodisperse and moderately polydisperse systems. The fact that these findings agree with previous experimental studies of colloidal systems in which particle are subject to diffusive dynamics, suggests that the dynamical signature we identify with the freezing transition is a consequence of packing effects alone.
Collapse
|
8
|
On the ergodicity of supercooled molecular glass-forming liquids at the dynamical arrest: the o-terphenyl case. Sci Rep 2014; 4:3747. [PMID: 24434872 PMCID: PMC3894564 DOI: 10.1038/srep03747] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/23/2013] [Indexed: 01/12/2023] Open
Abstract
The dynamics of supercooled ortho-terphenyl has been studied using photon-correlation spectroscopy (PCS) in the depolarized scattering geometry. The obtained relaxation curves are analyzed according to the mode-coupling theory (MCT) for supercooled liquids. The main results are: i) the observation of the secondary Johari-Goldstein relaxation (β) that has its onset just at the dynamical crossover temperature TB (TM > TB > Tg); ii) the confirmation, of the suggestion of a recent statistical mechanical study, that such a molecular system remains ergodic also below the calorimetric glass-transition temperature Tg. Our experimental data give evidence that the time scales of the primary (α) and this secondary relaxations are correlated. Finally a comparison with recent PCS experiments in a colloidal system confirms the primary role of the dynamical crossover in the physics of the dynamical arrest.
Collapse
|
9
|
Martinez VA, Besseling R, Croze OA, Tailleur J, Reufer M, Schwarz-Linek J, Wilson LG, Bees MA, Poon WCK. Differential dynamic microscopy: a high-throughput method for characterizing the motility of microorganisms. Biophys J 2012; 103:1637-47. [PMID: 23083706 DOI: 10.1016/j.bpj.2012.08.045] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 08/14/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022] Open
Abstract
We present a fast, high-throughput method for characterizing the motility of microorganisms in three dimensions based on standard imaging microscopy. Instead of tracking individual cells, we analyze the spatiotemporal fluctuations of the intensity in the sample from time-lapse images and obtain the intermediate scattering function of the system. We demonstrate our method on two different types of microorganisms: the bacterium Escherichia coli (both smooth swimming and wild type) and the biflagellate alga Chlamydomonas reinhardtii. We validate the methodology using computer simulations and particle tracking. From the intermediate scattering function, we are able to extract the swimming speed distribution, fraction of motile cells, and diffusivity for E. coli, and the swimming speed distribution, and amplitude and frequency of the oscillatory dynamics for C. reinhardtii. In both cases, the motility parameters were averaged over ∼10(4) cells and obtained in a few minutes.
Collapse
Affiliation(s)
- Vincent A Martinez
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Decoupling of rotational and translational diffusion in supercooled colloidal fluids. Proc Natl Acad Sci U S A 2012; 109:17891-6. [PMID: 23071311 DOI: 10.1073/pnas.1203328109] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We use confocal microscopy to directly observe 3D translational and rotational diffusion of tetrahedral clusters, which serve as tracers in colloidal supercooled fluids. We find that as the colloidal glass transition is approached, translational and rotational diffusion decouple from each other: Rotational diffusion remains inversely proportional to the growing viscosity whereas translational diffusion does not, decreasing by a much lesser extent. We quantify the rotational motion with two distinct methods, finding agreement between these methods, in contrast with recent simulation results. The decoupling coincides with the emergence of non-Gaussian displacement distributions for translation whereas rotational displacement distributions remain Gaussian. Ultimately, our work demonstrates that as the glass transition is approached, the sample can no longer be approximated as a continuum fluid when considering diffusion.
Collapse
|
11
|
Leocmach M, Tanaka H. Roles of icosahedral and crystal-like order in the hard spheres glass transition. Nat Commun 2012; 3:974. [DOI: 10.1038/ncomms1974] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/25/2012] [Indexed: 11/09/2022] Open
|
12
|
Hunter GL, Weeks ER. The physics of the colloidal glass transition. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:066501. [PMID: 22790649 DOI: 10.1088/0034-4885/75/6/066501] [Citation(s) in RCA: 345] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Beyond a certain concentration, the system is said to be a colloidal glass; structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition, with an emphasis on experimental observations. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including increases in viscosity and relaxation times, dynamical heterogeneity and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come.
Collapse
Affiliation(s)
- Gary L Hunter
- Department of Physics, Emory University, Math and Science Center 400 Dowman Dr., N201 Atlanta, GA 30322, USA
| | | |
Collapse
|
13
|
Tanaka H. Roles of bond orientational ordering in glass transition and crystallization. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:284115. [PMID: 21709320 DOI: 10.1088/0953-8984/23/28/284115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It is widely believed that crystallization in three dimensions is primarily controlled by positional ordering, and not by bond orientational ordering. In other words, bond orientational ordering is usually considered to be merely a consequence of positional ordering and thus has often been ignored. This one-order-parameter (density) description may be reasonable when we consider an equilibrium liquid-solid transition, but may not be enough to describe a metastable state and the kinetics of the transition. Here we propose that bond orientational ordering can play a key role in (i) crystallization, (ii) the ordering to quasi-crystal and (iii) vitrification, which occurs under rather weak frustration against crystallization. In a metastable supercooled state before crystallization, a system generally tends to have bond orientational order at least locally as a result of a constraint of dense packing. For a system interacting with hard-core repulsions, the constraint is intrinsically of geometrical origin and thus the basic physics is the same as nematic ordering of rod-like particles upon densification. Furthermore, positional ordering is easily destroyed even by weak frustration such as polydispersity and anisotropic interactions which favour a symmetry not consistent with that of the equilibrium crystal. Thus we may say that vitrification can be achieved by disturbing and prohibiting long-range positional ordering. Even in such a situation, bond orientational ordering still survives, accompanying its critical-like fluctuations, which are the origin of dynamic heterogeneity for this case. This scenario naturally explains both the absence of positional order and the development of bond orientational order upon cooling in a supercooled state. Although our argument is speculative in nature, we emphasize that this physical picture can coherently explain crystallization, vitrification, quasi-crystallization and their relationship in a natural manner. For a strongly frustrated system, even bond orientational order can be destroyed. Even in such a case there may still appear a structural signature of dense packing, which is linked to slow dynamics.
Collapse
Affiliation(s)
- Hajime Tanaka
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Brand S, Ball RC, Nicodemi M. Stochastic transitions and jamming in granular pipe flow. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:031309. [PMID: 21517496 DOI: 10.1103/physreve.83.031309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Indexed: 05/30/2023]
Abstract
We study a model granular suspension driven down a channel by an embedding fluid via computer simulations. We characterize the different system flow regimes and the stochastic nature of the transitions between them. For packing fractions below a threshold ϕ{m}, granular flow is disordered and exhibits an Ostwald-de Waele-type power-law shear-stress constitutive relation. Above ϕ{m}, two asymptotic states exist; disordered flow can persist indefinitely, yet, in a fraction of samples, the system self-organizes in an ordered form of flow where grains move in parallel ordered layers. In the latter regime, the Ostwald-de Waele relationship breaks down and a nearly solid plug appears in the center, with linear shear regions at the boundaries. Above a higher threshold ϕ{g}, an abrupt jamming transition is observed if ordering is avoided.
Collapse
Affiliation(s)
- Samuel Brand
- Department of Physics and Complexity Science Centre, University of Warwick, United Kingdom
| | | | | |
Collapse
|
15
|
Martinez VA, Thijssen JHJ, Zontone F, van Megen W, Bryant G. Dynamics of hard sphere suspensions using dynamic light scattering and X-ray photon correlation spectroscopy: Dynamics and scaling of the intermediate scattering function. J Chem Phys 2011; 134:054505. [DOI: 10.1063/1.3525101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Martinez VA, Bryant G, van Megen W. Aging dynamics of colloidal hard sphere glasses. J Chem Phys 2010; 133:114906. [DOI: 10.1063/1.3478542] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
van Megen W, Williams SR. Comment on "Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition". PHYSICAL REVIEW LETTERS 2010; 104:169601-169602. [PMID: 20482090 DOI: 10.1103/physrevlett.104.169601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Indexed: 05/29/2023]
|
18
|
van Megen W, Martinez VA, Bryant G. Scaling of the space-time correlation function of particle currents in a suspension of hard-sphere-like particles: exposing when the motion of particles is Brownian. PHYSICAL REVIEW LETTERS 2009; 103:258302. [PMID: 20366293 DOI: 10.1103/physrevlett.103.258302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Indexed: 05/29/2023]
Abstract
The current correlation function is determined from dynamic light scattering measurements of a suspension of particles with hard spherelike interactions. For suspensions in thermodynamic equilibrium we find scaling of the space and time variables of the current correlation function. This finding supports the notion that the movement of suspended particles can be described in terms of uncorrelated Brownian encounters. However, in the metastable fluid, at volume fractions above freezing, this scaling fails.
Collapse
Affiliation(s)
- W van Megen
- Department of Applied Physics, Royal Melbourne Institute of Technology, Melbourne, Victoria 3000, Australia
| | | | | |
Collapse
|
19
|
Fall A, Bertrand F, Ovarlez G, Bonn D. Yield stress and shear banding in granular suspensions. PHYSICAL REVIEW LETTERS 2009; 103:178301. [PMID: 19905785 DOI: 10.1103/physrevlett.103.178301] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Indexed: 05/28/2023]
Abstract
We study the emergence of a yield stress in dense suspensions of non-Brownian particles by combining local velocity and concentration measurements using magnetic resonance imaging with macroscopic rheometric experiments. We show that the competition between gravity and viscous stresses is at the origin of the development of a yield stress in these systems at relatively low volume fractions. Moreover, it is accompanied by a shear-banding phenomenon that is the signature of this competition. However, if the system is carefully density matched, no yield stress is encountered until a volume fraction of 62.7 +/- 0.3%.
Collapse
Affiliation(s)
- Abdoulaye Fall
- Van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65, 1018XE Amsterdam, The Netherlands
| | | | | | | |
Collapse
|