1
|
Hu H, Wang J, Liu XJ. Exact Spectral Properties of Fermi Polarons in One-Dimensional Lattices: Anomalous Fermi Singularities and Polaron Quasiparticles. PHYSICAL REVIEW LETTERS 2025; 134:153403. [PMID: 40315500 DOI: 10.1103/physrevlett.134.153403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/20/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
We calculate the exact spectral function of a single impurity repulsively interacting with a bath of fermions in one-dimensional lattices, by deriving the explicit expression of the form factor for both regular Bethe states and the irregular spin-flip state and η-pairing state, based on the exactly solvable one-dimensional Hubbard model. While at low impurity momentum Q∼0 the spectral function is dominated by two power-law Fermi singularities, at large momentum we observe that the two singularities develop into two-sided distributions and eventually become anomalous Fermi singularities at the boundary of the Brillouin zone (i.e., Q=±π), with the power-law tails extending toward low energy. Near the quarter filling of the Fermi bath, we also find two broad polaron peaks at large impurity momentum, collectively contributed by many excited many-body states with non-negligible form factors. Our exact results of those distinct features in one-dimensional Fermi polarons, which have no correspondences in two and three dimensions, could be readily probed in cold-atom laboratories by trapping highly imbalanced two-component fermionic atoms into one-dimensional optical lattices.
Collapse
Affiliation(s)
- Hui Hu
- Swinburne University of Technology, Centre for Quantum Technology Theory, Melbourne 3122, Australia
| | - Jia Wang
- Swinburne University of Technology, Centre for Quantum Technology Theory, Melbourne 3122, Australia
| | - Xia-Ji Liu
- Swinburne University of Technology, Centre for Quantum Technology Theory, Melbourne 3122, Australia
| |
Collapse
|
2
|
Huang X, Lado JL, Sainio J, Liljeroth P, Ganguli SC. Doped Mott Phase and Charge Correlations in Monolayer 1T-NbSe_{2}. PHYSICAL REVIEW LETTERS 2025; 134:046504. [PMID: 39951604 DOI: 10.1103/physrevlett.134.046504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 12/23/2024] [Indexed: 02/16/2025]
Abstract
The doped Hubbard model is one of the paradigmatic platforms to engineer exotic quantum many-body states, including charge-ordered states, strange metals, and unconventional superconductors. While undoped and doped correlated phases have been experimentally realized in a variety of twisted van der Waals materials, experiments in monolayer materials, and in particular 1T transition metal dichalcogenides, have solely reached the conventional insulating undoped regime. Correlated phases in monolayer two-dimensional materials have much higher associated energy scales than their twisted counterparts, making doped correlated monolayers an attractive platform for high temperature correlated quantum matter. Here, we demonstrate the realization of a doped Mott phase in a van der Waals dichalcogenide 1T-NbSe_{2} monolayer. The system is electron doped due to electron transfer from a monolayer van der Waals substrate via proximity, leading to a correlated triangular lattice with both half-filled and fully filled sites. We analyze the distribution of the half-filled and filled sites and show the arrangement is unlikely to be controlled by disorder alone, and we show that the presence of competing nonlocal many-body correlations would account for the charge correlations found experimentally. Our results establish 1T-NbSe_{2} as a potential monolayer platform to explore correlated doped Mott physics in a frustrated lattice.
Collapse
Affiliation(s)
- Xin Huang
- Aalto University, Department of Applied Physics, FI-00076 Aalto, Finland
| | - Jose L Lado
- Aalto University, Department of Applied Physics, FI-00076 Aalto, Finland
| | - Jani Sainio
- Aalto University, Department of Applied Physics, FI-00076 Aalto, Finland
| | - Peter Liljeroth
- Aalto University, Department of Applied Physics, FI-00076 Aalto, Finland
| | | |
Collapse
|
3
|
von Milczewski J, Chen X, Imamoglu A, Schmidt R. Superconductivity Induced by Strong Electron-Exciton Coupling in Doped Atomically Thin Semiconductor Heterostructures. PHYSICAL REVIEW LETTERS 2024; 133:226903. [PMID: 39672128 DOI: 10.1103/physrevlett.133.226903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/11/2024] [Accepted: 09/23/2024] [Indexed: 12/15/2024]
Abstract
We study a mechanism to induce superconductivity in atomically thin semiconductors where excitons mediate an effective attraction between electrons. Our model includes interaction effects beyond the paradigm of phonon-mediated superconductivity and connects to the well-established limits of Bose and Fermi polarons. By accounting for the strong-coupling physics of trions, we find that the effective electron-exciton interaction develops a strong frequency and momentum dependence accompanied by the system undergoing an emerging BCS-BEC crossover from weakly bound s-wave Cooper pairs to a superfluid of bipolarons. Even at strong-coupling the bipolarons remain relatively light, resulting in critical temperatures of up to 10% of the Fermi temperature. This renders heterostructures of two-dimensional materials a promising candidate to realize superconductivity at high critical temperatures set by electron doping and trion binding energies.
Collapse
Affiliation(s)
- Jonas von Milczewski
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany
- Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xin Chen
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany
| | | | - Richard Schmidt
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Szwed EA, Vermilyea B, Choksy DJ, Zhou Z, Fogler MM, Butov LV, Efimkin DK, Baldwin KW, Pfeiffer L. Excitonic Bose Polarons in Electron-Hole Bilayers. NANO LETTERS 2024; 24:13219-13223. [PMID: 39400246 DOI: 10.1021/acs.nanolett.4c03288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Bose polarons are mobile particles of one kind dressed by excitations of the surrounding degenerate Bose gas of particles of another kind. These many-body objects have been realized in ultracold atomic gases and become a subject of intensive studies. In this work, we show that excitons in electron-hole bilayers offer new opportunities for exploring polarons in strongly interacting, highly tunable bosonic systems. We found that Bose polarons are formed by spatially direct excitons immersed in degenerate Bose gases of spatially indirect excitons (IXs). We detected both attractive and repulsive Bose polarons by measuring photoluminescence excitation spectra. We controlled the density of IX Bose gas by optical excitation and observed an enhancement of the energy splitting between attractive and repulsive Bose polarons with increasing IX density, in agreement with our theoretical calculations.
Collapse
Affiliation(s)
- Erik A Szwed
- Department of Physics, University of California San Diego, La Jolla, California 92093, United States
| | - Brian Vermilyea
- Department of Physics, University of California San Diego, La Jolla, California 92093, United States
| | - Darius J Choksy
- Department of Physics, University of California San Diego, La Jolla, California 92093, United States
| | - Zhiwen Zhou
- Department of Physics, University of California San Diego, La Jolla, California 92093, United States
| | - Michael M Fogler
- Department of Physics, University of California San Diego, La Jolla, California 92093, United States
| | - Leonid V Butov
- Department of Physics, University of California San Diego, La Jolla, California 92093, United States
| | - Dmitry K Efimkin
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Kirk W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Loren Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Hu H, Wang J, Liu XJ. Theory of the Spectral Function of Fermi Polarons at Finite Temperature. PHYSICAL REVIEW LETTERS 2024; 133:083403. [PMID: 39241723 DOI: 10.1103/physrevlett.133.083403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Abstract
We develop a general theory of Fermi polarons at nonzero temperature, including particle-hole excitations of the Fermi sea shakeup to arbitrarily high orders. The exact set of equations of the spectral function is derived by using both Chevy ansatz and diagrammatic approach, and their equivalence is clarified to hold in free space only, with an unregularized infinitesimal interaction strength. The correction to the polaron spectral function arising from two-particle-hole excitations is explicitly examined for an exemplary case of Fermi polarons in one-dimensional optical lattices. We find quantitative improvements at low temperatures with the inclusion of two-particle-hole excitations, in both polaron energies and decay rates. Our exact theory of Fermi polarons with arbitrary orders of particle-hole excitations might be used to better understand the intriguing polaron dynamical responses in two or three dimensions, whether in free space or within lattices.
Collapse
|
6
|
Wasak T, Sighinolfi M, Lang J, Piazza F, Recati A. Decoherence and Momentum Relaxation in Fermi-Polaron Rabi Dynamics: A Kinetic Equation Approach. PHYSICAL REVIEW LETTERS 2024; 132:183001. [PMID: 38759171 DOI: 10.1103/physrevlett.132.183001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/26/2024] [Indexed: 05/19/2024]
Abstract
Despite the paradigmatic nature of the Fermi-polaron model, the theoretical description of its nonlinear dynamics poses challenges. Here, we apply a quantum kinetic theory of driven polarons to recent experiments with ultracold atoms, where Rabi oscillations between a Fermi-polaron state and a noninteracting level were reported. The resulting equations separate decoherence from momentum relaxation, with the corresponding rates showing a different dependence on microscopic scattering processes and quasiparticle properties. We describe both the polaron ground state and the excited repulsive-polaron state and we find a good quantitative agreement between our predictions and the available experimental data without any fitting parameter. Our approach not only takes into account collisional phenomena, but also it can be used to study the different roles played by decoherence and the collisional integral in the strongly interacting highly imbalanced mixture of Fermi gases.
Collapse
Affiliation(s)
- Tomasz Wasak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Matteo Sighinolfi
- INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Trento, Italy
| | - Johannes Lang
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, 50937 Cologne, Germany
| | - Francesco Piazza
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86135 Augsburg, Germany
| | - Alessio Recati
- INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Trento, Italy
- Trento Institute for Fundamental Physics and Applications, INFN, 38123, Trento, Italy
| |
Collapse
|
7
|
Gievers M, Wagner M, Schmidt R. Probing Polaron Clouds by Rydberg Atom Spectroscopy. PHYSICAL REVIEW LETTERS 2024; 132:053401. [PMID: 38364123 DOI: 10.1103/physrevlett.132.053401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
In recent years, Rydberg excitations in atomic quantum gases have become a successful platform to explore quantum impurity problems. A single impurity immersed in a Fermi gas leads to the formation of a polaron, a quasiparticle consisting of the impurity being dressed by the surrounding medium. With a radius of about the Fermi wavelength, the density profile of a polaron cannot be explored using in situ optical imaging techniques. In this Letter, we propose a new experimental measurement technique that enables the in situ imaging of the polaron cloud in ultracold quantum gases. The impurity atom induces the formation of a polaron cloud and is then excited to a Rydberg state. Because of the mesoscopic interaction range of Rydberg excitations, which can be tuned by the principal numbers of the Rydberg state, atoms extracted from the polaron cloud form dimers with the impurity. By performing first principle calculations of the absorption spectrum based on a functional determinant approach, we show how the occupation of the dimer state can be directly observed in spectroscopy experiments and can be mapped onto the density profile of the gas particles, hence providing a direct, real-time, and in situ measure of the polaron cloud.
Collapse
Affiliation(s)
- Marcel Gievers
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- Max Planck Institute of Quantum Optics, 85748 Garching, Germany
| | - Marcel Wagner
- Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Richard Schmidt
- Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Petković A, Ristivojevic Z. Dissipative Dynamics of a Heavy Impurity in a Bose Gas in the Strong Coupling Regime. PHYSICAL REVIEW LETTERS 2023; 131:186001. [PMID: 37977626 DOI: 10.1103/physrevlett.131.186001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023]
Abstract
We study the motion of a heavy impurity in a one-dimensional Bose gas. The impurity experiences the friction force due to scattering off thermally excited quasiparticles. We present detailed analysis of an arbitrarily strong impurity-boson coupling in a wide range of temperatures within a microscopic theory. Focusing mostly on weakly interacting bosons, we derive an analytical result for the friction force and uncover new regimes of the impurity dynamics. Particularly interesting is the low-temperature T^{2} dependence of the friction force obtained for a strongly coupled impurity, which should be contrasted with the expected T^{4} scaling. This new regime applies to systems of bosons with an arbitrary repulsion strength. We finally study the evolution of the impurity with a given initial momentum. We evaluate analytically its nonstationary momentum distribution function. The impurity relaxation towards the equilibrium is a realization of the Ornstein-Uhlenbeck process in momentum space.
Collapse
Affiliation(s)
- Aleksandra Petković
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Zoran Ristivojevic
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
9
|
Cong X, Mohammadi PA, Zheng M, Watanabe K, Taniguchi T, Rhodes D, Zhang XX. Interplay of valley polarized dark trion and dark exciton-polaron in monolayer WSe 2. Nat Commun 2023; 14:5657. [PMID: 37704654 PMCID: PMC10500002 DOI: 10.1038/s41467-023-41475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
The interactions between charges and excitons involve complex many-body interactions at high densities. The exciton-polaron model has been adopted to understand the Fermi sea screening of charged excitons in monolayer transition metal dichalcogenides. The results provide good agreement with absorption measurements, which are dominated by dilute bright exciton responses. Here we investigate the Fermi sea dressing of spin-forbidden dark excitons in monolayer WSe2. With a Zeeman field, the valley-polarized dark excitons show distinct p-doping dependence in photoluminescence when the carriers reach a critical density. This density can be interpreted as the onset of strongly modified Fermi sea interactions and shifts with increasing exciton density. Through valley-selective excitation and dynamics measurements, we also infer an intervalley coupling between the dark trions and exciton-polarons mediated by the many-body interactions. Our results reveal the evolution of Fermi sea screening with increasing exciton density and the impacts of polaron-polaron interactions, which lay the foundation for understanding electronic correlations and many-body interactions in 2D systems.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physics, University of Florida, Gainesville, FL, USA
| | | | - Mingyang Zheng
- Department of Physics, University of Florida, Gainesville, FL, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan
| | - Daniel Rhodes
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiao-Xiao Zhang
- Department of Physics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Colussi VE, Caleffi F, Menotti C, Recati A. Lattice Polarons across the Superfluid to Mott Insulator Transition. PHYSICAL REVIEW LETTERS 2023; 130:173002. [PMID: 37172254 DOI: 10.1103/physrevlett.130.173002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/11/2023] [Accepted: 03/17/2023] [Indexed: 05/14/2023]
Abstract
We study the physics of a mobile impurity confined in a two-dimensional lattice, moving within a Bose-Hubbard bath at zero temperature. Exploiting the quantum Gutzwiller formalism, we develop a beyond-Fröhlich model of the bath-impurity interaction to describe the properties of the polaronic quasiparticle formed by the dressing of the impurity by quantum fluctuations of the bath. We find a stable and well-defined polaron throughout the entire phase diagram of the bath, except for the very low tunneling limit of the hard-core superfluid. The polaron properties are highly sensitive to the different universality classes of the quantum phase transition between the superfluid and Mott insulating phases, providing an unambiguous probe of correlations and collective modes in a quantum critical many-body environment.
Collapse
Affiliation(s)
- V E Colussi
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, I-38123 Trento, Italy
| | - F Caleffi
- International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - C Menotti
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, I-38123 Trento, Italy
| | - A Recati
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, I-38123 Trento, Italy
- Trento Institute for Fundamental Physics and Applications, INFN, Via Sommarive 14, 38123 Povo, Trento, Italy
| |
Collapse
|
11
|
Strongly Interacting Bose Polarons in Two-Dimensional Atomic Gases and Quantum Fluids of Polaritons. ATOMS 2022. [DOI: 10.3390/atoms11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polarons are quasiparticles relevant across many fields in physics: from condensed matter to atomic physics. Here, we study the quasiparticle properties of two-dimensional strongly interacting Bose polarons in atomic Bose–Einstein condensates and polariton gases. Our studies are based on the non-self consistent T-matrix approximation adapted to these physical systems. For the atomic case, we study the spectral and quasiparticle properties of the polaron in the presence of a magnetic Feshbach resonance. We show the presence of two polaron branches: an attractive polaron, a low-lying state that appears as a well-defined quasiparticle for weak attractive interactions, and a repulsive polaron, a metastable state that becomes the dominant branch at weak repulsive interactions. In addition, we study a polaron arising from the dressing of a single itinerant electron by a quantum fluid of polaritons in a semiconductor microcavity. We demonstrate the persistence of the two polaron branches whose properties can be controlled over a wide range of parameters by tuning the cavity mode.
Collapse
|
12
|
Abstract
Interactions between quasiparticles are of fundamental importance and ultimately determine the macroscopic properties of quantum matter. A famous example is the phenomenon of superconductivity, which arises from attractive electron-electron interactions that are mediated by phonons or even other more exotic fluctuations in the material. Here we introduce mobile exciton impurities into a two-dimensional electron gas and investigate the interactions between the resulting Fermi polaron quasiparticles. We employ multi-dimensional coherent spectroscopy on monolayer WS2, which provides an ideal platform for determining the nature of polaron-polaron interactions due to the underlying trion fine structure and the valley specific optical selection rules. At low electron doping densities, we find that the dominant interactions are between polaron states that are dressed by the same Fermi sea. In the absence of bound polaron pairs (bipolarons), we show using a minimal microscopic model that these interactions originate from a phase-space filling effect, where excitons compete for the same electrons. We furthermore reveal the existence of a bipolaron bound state with remarkably large binding energy, involving excitons in different valleys cooperatively bound to the same electron. Our work lays the foundation for probing and understanding strong electron correlation effects in two-dimensional layered structures such as moiré superlattices. Here, the authors investigate the interactions between Fermi polarons in monolayer WS2 by multi-dimensional coherent spectroscopy, and find that, at low electron doping densities, the dominant interactions are between polaron states that are dressed by the same Fermi sea. They also observe a bipolaron bound state with large binding energy, involving excitons in different valleys cooperatively bound to the same electron.
Collapse
|
13
|
Ding S, Drewsen M, Arlt JJ, Bruun GM. Mediated Interaction between Ions in Quantum Degenerate Gases. PHYSICAL REVIEW LETTERS 2022; 129:153401. [PMID: 36269954 DOI: 10.1103/physrevlett.129.153401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/04/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We explore the interaction between two trapped ions mediated by a surrounding quantum degenerate Bose or Fermi gas. Using perturbation theory valid for weak atom-ion interaction, we show analytically that the interaction mediated by a Bose gas has a power-law behavior for large distances whereas it has a Yukawa form for intermediate distances. For a Fermi gas, the mediated interaction is given by a power law for large density and by a Ruderman-Kittel-Kasuya-Yosida form for low density. For strong atom-ion interaction, we use a diagrammatic theory to demonstrate that the mediated interaction can be a significant addition to the bare Coulomb interaction between the ions, when an atom-ion bound state is close to threshold. Finally, we show that the induced interaction leads to substantial and observable shifts in the ion phonon frequencies.
Collapse
Affiliation(s)
- Shanshan Ding
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Michael Drewsen
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Jan J Arlt
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - G M Bruun
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Su Z, Yang H, Cao J, Wang XY, Rui J, Zhao B, Pan JW. Resonant Control of Elastic Collisions between ^{23}Na^{40}K Molecules and ^{40}K Atoms. PHYSICAL REVIEW LETTERS 2022; 129:033401. [PMID: 35905340 DOI: 10.1103/physrevlett.129.033401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
We have demonstrated the resonant control of the elastic scattering cross sections in the vicinity of Feshbach resonances between ^{23}Na^{40}K molecules and ^{40}K atoms by studying the thermalization between them. The elastic scattering cross sections vary by more than 2 orders of magnitude close to the resonance, and can be well described by an asymmetric Fano profile. The parameters that characterize the magnetically tunable s-wave scattering length are determined from the elastic scattering cross sections. The observation of resonantly controlled elastic scattering cross sections opens up the possibility to study strongly interacting atom-molecule mixtures and improve our understanding of the complex atom-molecule Feshbach resonances.
Collapse
Affiliation(s)
- Zhen Su
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China; and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Huan Yang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China; and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jin Cao
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China; and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Xin-Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China; and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jun Rui
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China; and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bo Zhao
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China; and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jian-Wei Pan
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China; and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
15
|
Abstract
Polaron quasiparticles are formed when a mobile impurity is coupled to the elementary excitations of a many-particle background. In the field of ultracold atoms, the study of the associated impurity problem has attracted a growing interest over the last fifteen years. Polaron quasiparticle properties are essential to our understanding of a variety of paradigmatic quantum many-body systems realized in ultracold atomic gases and in the solid state, from imbalanced Bose–Fermi and Fermi–Fermi mixtures to fermionic Hubbard models. In this topical review, we focus on the so-called repulsive polaron branch, which emerges as an excited many-body state in systems with underlying attractive interactions such as ultracold atomic mixtures, and is characterized by an effective repulsion between the impurity and the surrounding medium. We give a brief account of the current theoretical and experimental understanding of repulsive polaron properties, for impurities embedded in both fermionic and bosonic media, and we highlight open issues deserving future investigations.
Collapse
|
16
|
Wang J, Liu XJ, Hu H. Exact Quasiparticle Properties of a Heavy Polaron in BCS Fermi Superfluids. PHYSICAL REVIEW LETTERS 2022; 128:175301. [PMID: 35570441 DOI: 10.1103/physrevlett.128.175301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
We present the Ramsey response and radio-frequency spectroscopy of a heavy impurity immersed in an interacting Fermi superfluid, using the exact functional determinant approach. We describe the Fermi superfluid through the conventional Bardeen-Cooper-Schrieffer theory and investigate the role of the pairing gap on quasiparticle properties revealed by the two spectroscopies. The energy cost for pair breaking prevents Anderson's orthogonality catastrophe that occurs in a noninteracting Fermi gas and allows the existence of polaron quasiparticles in the exactly solvable heavy impurity limit. Hence, we rigorously confirm the remarkable features such as dark continuum, molecule-hole continuum, and repulsive polaron. For a magnetic impurity scattering at finite temperature, we predict additional resonances related to the subgap Yu-Shiba-Rusinov bound state, whose positions can be used to measure the superfluid pairing gap. For a nonmagnetic scattering at zero temperature, we surprisingly find undamped repulsive polarons. These exact results might be readily observed in quantum gas experiments with Bose-Fermi mixtures that have a large-mass ratio.
Collapse
Affiliation(s)
- Jia Wang
- Centre for Quantum Technology Theory, Swinburne University of Technology, Melbourne 3122, Australia
| | - Xia-Ji Liu
- Centre for Quantum Technology Theory, Swinburne University of Technology, Melbourne 3122, Australia
| | - Hui Hu
- Centre for Quantum Technology Theory, Swinburne University of Technology, Melbourne 3122, Australia
| |
Collapse
|
17
|
Abstract
We investigate the properties of a dilute gas of impurities embedded in an ultracold gas of bosons that forms a Bose–Einstein condensate (BEC). This work focuses mainly on the equation of state (EoS) of the impurity gas at zero temperature and the induced interaction between impurities mediated by the host bath. We use perturbative field-theory approaches, such as Hugenholtz–Pines formalism, in the weakly interacting regime. In turn, for strong interactions, we aim at non-perturbative techniques such as quantum–Monte Carlo (QMC) methods. Our findings agree with experimental observations for an ultra dilute gas of impurities, modeled in the framework of the single impurity problem; however, as the density of impurities increases, systematic deviations are displayed with respect to the one-body Bose polaron problem.
Collapse
|
18
|
Planella G, Cenni MFB, Acín A, Mehboudi M. Bath-Induced Correlations Enhance Thermometry Precision at Low Temperatures. PHYSICAL REVIEW LETTERS 2022; 128:040502. [PMID: 35148153 DOI: 10.1103/physrevlett.128.040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
We study the role of bath-induced correlations in temperature estimation of cold bosonic baths. Our protocol includes multiple probes, that are not interacting, nor are they initially correlated to each other. They interact with a bosonic sample and reach a nonthermal steady state, which is measured to estimate the temperature of the sample. It is well known that in the steady state such noninteracting probes may get correlated to each other and even entangled. Nonetheless, the impact of these correlations in metrology has not been deeply investigated yet. Here, we examine their role for thermometry of cold bosonic gases and show that, although being classical, bath-induced correlations can lead to significant enhancement of precision for thermometry. The improvement is especially important at low temperatures, where attaining high precision thermometry is particularly demanding. The proposed thermometry scheme does not require any precise dynamical control of the probes and tuning the parameters and is robust to noise in initial preparation, as it is built upon the steady state generated by the natural dissipative dynamics of the system. Therefore, our results put forward new possibilities in thermometry at low temperatures, of relevance, for instance, in cold gases and Bose-Einstein condensates.
Collapse
Affiliation(s)
- Guim Planella
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute for Theoretical Physics, Utrecht University, 3584 CS Utrecht, Netherlands
| | - Marina F B Cenni
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Antonio Acín
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Mohammad Mehboudi
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
- Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
| |
Collapse
|
19
|
Abstract
Recent studies have demonstrated that higher than two-body bath-impurity correlations are not important for quantitatively describing the ground state of the Bose polaron. Motivated by the above, we employ the so-called Gross Ansatz (GA) approach to unravel the stationary and dynamical properties of the homogeneous one-dimensional Bose-polaron for different impurity momenta and bath-impurity couplings. We explicate that the character of the equilibrium state crossovers from the quasi-particle Bose polaron regime to the collective-excitation stationary dark-bright soliton for varying impurity momentum and interactions. Following an interspecies interaction quench the temporal orthogonality catastrophe is identified, provided that bath-impurity interactions are sufficiently stronger than the intraspecies bath ones, thus generalizing the results of the confined case. This catastrophe originates from the formation of dispersive shock wave structures associated with the zero-range character of the bath-impurity potential. For initially moving impurities, a momentum transfer process from the impurity to the dispersive shock waves via the exerted drag force is demonstrated, resulting in a final polaronic state with reduced velocity. Our results clearly demonstrate the crucial role of non-linear excitations for determining the behavior of the one-dimensional Bose polaron.
Collapse
|
20
|
Abstract
Two-dimensional semiconductors inside optical microcavities have emerged as a versatile platform to explore new hybrid light–matter quantum states. A strong light–matter coupling leads to the formation of exciton-polaritons, which in turn interact with the surrounding electron gas to form quasiparticles called polaron-polaritons. Here, we develop a general microscopic framework to calculate the properties of these quasiparticles, such as their energy and the interactions between them. From this, we give microscopic expressions for the parameters entering a Landau theory for the polaron-polaritons, which offers a simple yet powerful way to describe such interacting light–matter many-body systems. As an example of the application of our framework, we then use the ladder approximation to explore the properties of the polaron-polaritons. Furthermore, we show that they can be measured in a non-demolition way via the light transmission/reflection spectrum of the system. Finally, we demonstrate that the Landau effective interaction mediated by electron-hole excitations is attractive leading to red shifts of the polaron-polaritons. Our work provides a systematic framework to study exciton-polaritons in electronically doped two-dimensional materials such as novel van der Waals heterostructures.
Collapse
|
21
|
Will M, Astrakharchik GE, Fleischhauer M. Polaron Interactions and Bipolarons in One-Dimensional Bose Gases in the Strong Coupling Regime. PHYSICAL REVIEW LETTERS 2021; 127:103401. [PMID: 34533353 DOI: 10.1103/physrevlett.127.103401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Bose polarons, quasiparticles composed of mobile impurities surrounded by cold Bose gas, can experience strong interactions mediated by the many-body environment and form bipolaron bound states. Here we present a detailed study of heavy polarons in a one-dimensional Bose gas by formulating a nonperturbative theory and complementing it with exact numerical simulations. We develop an analytic approach for weak boson-boson interactions and arbitrarily strong impurity-boson couplings. Our approach is based on a mean-field theory that accounts for deformations of the superfluid by the impurities and in this way minimizes quantum fluctuations. The mean-field equations are solved exactly in the Born-Oppenheimer approximation, leading to an analytic expression for the interaction potential of heavy polarons, which is found to be in excellent agreement with quantum Monte Carlo (QMC) results. In the strong coupling limit, the potential substantially deviates from the exponential form valid for weak coupling and has a linear shape at short distances. Taking into account the leading-order Born-Huang corrections, we calculate bipolaron binding energies for impurity-boson mass ratios as low as 3 and find excellent agreement with QMC results.
Collapse
Affiliation(s)
- M Will
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - G E Astrakharchik
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034, Barcelona, Spain
| | - M Fleischhauer
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
22
|
Abstract
An impurity immersed in a medium constitutes a canonical scenario applicable in a wide range of fields in physics. Though our understanding has advanced significantly in the past decades, quantum impurities in a bosonic environment are still of considerable theoretical and experimental interest. Here, we discuss the initial dynamics of such impurities, which was recently observed in interferometric experiments. Experimental observations from weak to unitary interactions are presented and compared to a theoretical description. In particular, the transition between two initial dynamical regimes dominated by two-body interactions is analyzed, yielding transition times in clear agreement with the theoretical prediction. Additionally, the distinct time dependence of the coherence amplitude in these regimes is obtained by extracting its power-law exponents. This benchmarks our understanding and suggests new ways of probing dynamical properties of quantum impurities.
Collapse
|
23
|
Massignan P, Yegovtsev N, Gurarie V. Universal Aspects of a Strongly Interacting Impurity in a Dilute Bose Condensate. PHYSICAL REVIEW LETTERS 2021; 126:123403. [PMID: 33834819 DOI: 10.1103/physrevlett.126.123403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
We study the properties of an impurity immersed in a weakly interacting Bose gas, i.e., of a Bose polaron. In the perturbatively tractable limit of weak impurity-boson interactions many of its properties are known to depend only on the scattering length. Here we demonstrate that for strong (unitary) impurity-boson interactions all quasiparticle properties of a heavy Bose polaron, such as its energy, its residue, its Tan's contact, and the number of bosons trapped nearby the impurity, depend on the impurity-boson potential via a single parameter characterizing its range.
Collapse
Affiliation(s)
- Pietro Massignan
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034 Barcelona, Spain
| | - Nikolay Yegovtsev
- Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Victor Gurarie
- Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
24
|
Xiao K, Yan T, Liu Q, Yang S, Kan C, Duan R, Liu Z, Cui X. Many-Body Effect on Optical Properties of Monolayer Molybdenum Diselenide. J Phys Chem Lett 2021; 12:2555-2561. [PMID: 33683894 DOI: 10.1021/acs.jpclett.1c00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Excitons in monolayer transition metal dichalcogenides (TMDs) provide a paradigm of composite Boson in a two-dimensional system. This Letter reports a photoluminescence and reflectance study of excitons in monolayer molybdenum diselenide (MoSe2) with electrostatic gating. We observe the repulsive and attractive Fermi polaron modes of the band edge exciton, its excited state, and the spin-off excitons, which the simple three-particle trion model is insufficient to explain. The contrasting energy shift between the exciton and charge-bound excitons (repulsive and attractive polaron modes) and the remarkably different gate dependence of the polaron energy splitting between the ground state and the excited state excitons unambiguously support the Fermi polaron picture for excitons in monolayer TMDs.
Collapse
Affiliation(s)
- Ke Xiao
- Department of Physics, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Tengfei Yan
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Qiye Liu
- Department of Physics, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Siyuan Yang
- Department of Physics, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chiming Kan
- Department of Physics, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Xiaodong Cui
- Department of Physics, University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
25
|
Polaron Problems in Ultracold Atoms: Role of a Fermi Sea across Different Spatial Dimensions and Quantum Fluctuations of a Bose Medium. ATOMS 2021. [DOI: 10.3390/atoms9010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The notion of a polaron, originally introduced in the context of electrons in ionic lattices, helps us to understand how a quantum impurity behaves when being immersed in and interacting with a many-body background. We discuss the impact of the impurities on the medium particles by considering feedback effects from polarons that can be realized in ultracold quantum gas experiments. In particular, we exemplify the modifications of the medium in the presence of either Fermi or Bose polarons. Regarding Fermi polarons we present a corresponding many-body diagrammatic approach operating at finite temperatures and discuss how mediated two- and three-body interactions are implemented within this framework. Utilizing this approach, we analyze the behavior of the spectral function of Fermi polarons at finite temperature by varying impurity-medium interactions as well as spatial dimensions from three to one. Interestingly, we reveal that the spectral function of the medium atoms could be a useful quantity for analyzing the transition/crossover from attractive polarons to molecules in three-dimensions. As for the Bose polaron, we showcase the depletion of the background Bose-Einstein condensate in the vicinity of the impurity atom. Such spatial modulations would be important for future investigations regarding the quantification of interpolaron correlations in Bose polaron problems.
Collapse
|
26
|
Pérez-Ríos J. Cold chemistry: a few-body perspective on impurity physics of a single ion in an ultracold bath. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1881637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- J. Pérez-Ríos
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| |
Collapse
|
27
|
Dieterle T, Berngruber M, Hölzl C, Löw R, Jachymski K, Pfau T, Meinert F. Transport of a Single Cold Ion Immersed in a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2021; 126:033401. [PMID: 33543963 DOI: 10.1103/physrevlett.126.033401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
We investigate transport dynamics of a single low-energy ionic impurity in a Bose-Einstein condensate. The impurity is implanted into the condensate starting from a single Rydberg excitation, which is ionized by a sequence of fast electric field pulses aiming to minimize the ion's initial kinetic energy. Using a small electric bias field, we study the subsequent collisional dynamics of the impurity subject to an external force. The fast ion-atom collision rate, stemming from the dense degenerate host gas and the large ion-atom scattering cross section, allow us to study a regime of frequent collisions of the impurity within only tens of microseconds. Comparison of our measurements with stochastic trajectory simulations based on sequential Langevin collisions indicate diffusive transport properties of the impurity and allows us to measure its mobility. Our results open a novel path to study dynamics of charged quantum impurities in ultracold matter.
Collapse
Affiliation(s)
- T Dieterle
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - M Berngruber
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - C Hölzl
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - R Löw
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - K Jachymski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - T Pfau
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - F Meinert
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
28
|
Adlong HS, Liu WE, Scazza F, Zaccanti M, Oppong ND, Fölling S, Parish MM, Levinsen J. Quasiparticle Lifetime of the Repulsive Fermi Polaron. PHYSICAL REVIEW LETTERS 2020; 125:133401. [PMID: 33034470 DOI: 10.1103/physrevlett.125.133401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/20/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
We investigate the metastable repulsive branch of a mobile impurity coupled to a degenerate Fermi gas via short-range interactions. We show that the quasiparticle lifetime of this repulsive Fermi polaron can be experimentally probed by driving Rabi oscillations between weakly and strongly interacting impurity states. Using a time-dependent variational approach, we find that we can accurately model the impurity Rabi oscillations that were recently measured for repulsive Fermi polarons in both two and three dimensions. Crucially, our theoretical description does not include relaxation processes to the lower-lying attractive branch. Thus, the theory-experiment agreement demonstrates that the quasiparticle lifetime is dominated by many-body dephasing within the upper repulsive branch rather than by relaxation from the upper branch itself. Our findings shed light on recent experimental observations of persistent repulsive correlations, and have important consequences for the nature and stability of the strongly repulsive Fermi gas.
Collapse
Affiliation(s)
- Haydn S Adlong
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
| | - Weizhe Edward Liu
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Francesco Scazza
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO) and European Laboratory for Nonlinear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy
| | - Matteo Zaccanti
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO) and European Laboratory for Nonlinear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy
| | - Nelson Darkwah Oppong
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Simon Fölling
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Meera M Parish
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Jesper Levinsen
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| |
Collapse
|
29
|
Liu WE, Shi ZY, Levinsen J, Parish MM. Radio-Frequency Response and Contact of Impurities in a Quantum Gas. PHYSICAL REVIEW LETTERS 2020; 125:065301. [PMID: 32845677 DOI: 10.1103/physrevlett.125.065301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/04/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
We investigate the radio-frequency spectroscopy of impurities interacting with a quantum gas at finite temperature. In the limit of a single impurity, we show using Fermi's golden rule that introducing (or injecting) an impurity into the medium is equivalent to ejecting an impurity that is initially interacting with the medium, since the "injection" and "ejection" spectral responses are simply related to each other by an exponential function of frequency. Thus, the full spectral information for the quantum impurity is contained in the injection spectral response, which can be determined using a range of theoretical methods, including variational approaches. We use this property to compute the finite-temperature equation of state and Tan contact of the Fermi polaron. Our results for the contact of a mobile impurity are in excellent agreement with recent experiments and we find that the finite-temperature behavior is qualitatively different compared to the case of infinite impurity mass.
Collapse
Affiliation(s)
- Weizhe Edward Liu
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Zhe-Yu Shi
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jesper Levinsen
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Meera M Parish
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| |
Collapse
|
30
|
Dzsotjan D, Schmidt R, Fleischhauer M. Dynamical Variational Approach to Bose Polarons at Finite Temperatures. PHYSICAL REVIEW LETTERS 2020; 124:223401. [PMID: 32567929 DOI: 10.1103/physrevlett.124.223401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
We discuss the interaction of a mobile quantum impurity with a Bose-Einstein condensate of atoms at finite temperature. To describe the resulting Bose polaron formation we develop a dynamical variational approach applicable to an initial thermal gas of Bogoliubov phonons. We study the polaron formation after switching on the interaction, e.g., by a radio-frequency (rf) pulse from a noninteracting to an interacting state. To treat also the strongly interacting regime, interaction terms beyond the Fröhlich model are taken into account. We calculate the real-time impurity Green's function and discuss its temperature dependence. Furthermore we determine the rf absorption spectrum and find good agreement with recent experimental observations. We predict temperature-induced shifts and a substantial broadening of spectral lines. The analysis of the real-time Green's function reveals a crossover to a linear temperature dependence of the thermal decay rate of Bose polarons as unitary interactions are approached.
Collapse
Affiliation(s)
- David Dzsotjan
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
- Wigner Research Center, Konkoly-Thege ut 29-33, 1121 Budapest, Hungary
| | - Richard Schmidt
- Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Strasse. 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
| | - Michael Fleischhauer
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
31
|
Yan ZZ, Ni Y, Robens C, Zwierlein MW. Bose polarons near quantum criticality. Science 2020; 368:190-194. [DOI: 10.1126/science.aax5850] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 03/13/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Zoe Z. Yan
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yiqi Ni
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carsten Robens
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin W. Zwierlein
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Levinsen J, Marchetti FM, Keeling J, Parish MM. Spectroscopic Signatures of Quantum Many-Body Correlations in Polariton Microcavities. PHYSICAL REVIEW LETTERS 2019; 123:266401. [PMID: 31951450 DOI: 10.1103/physrevlett.123.266401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/19/2018] [Indexed: 06/10/2023]
Abstract
We theoretically investigate the many-body states of exciton polaritons that can be observed by pump-probe spectroscopy in high-Q inorganic microcavities. Here, a weak-probe "spin-down" polariton is introduced into a coherent state of "spin-up" polaritons created by a strong pump. We show that the ↓ impurities become dressed by excitations of the ↑ medium, and that they form new polaronic quasiparticles that feature two-point and three-point many-body quantum correlations that, in the low density regime, arise from coupling to the vacuum biexciton and triexciton states, respectively. In particular, we find that these correlations generate additional branches and avoided crossings in the ↓ optical transmission spectrum that have a characteristic dependence on the ↑-polariton density. Our results thus demonstrate a way to directly observe correlated many-body states in an exciton-polariton system that go beyond classical mean-field theories.
Collapse
Affiliation(s)
- Jesper Levinsen
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Francesca Maria Marchetti
- Departamento de Física Teórica de la Materia Condensada & Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jonathan Keeling
- SUPA, School of Physics and Astronomy, University of St Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Meera M Parish
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| |
Collapse
|
33
|
Wang J, Liu XJ, Hu H. Roton-Induced Bose Polaron in the Presence of Synthetic Spin-Orbit Coupling. PHYSICAL REVIEW LETTERS 2019; 123:213401. [PMID: 31809177 DOI: 10.1103/physrevlett.123.213401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 06/10/2023]
Abstract
We predict the existence of a roton-induced Bose polaron for an impurity immersed in a three-dimensional Bose-Einstein condensate with Raman-laser-induced spin-orbit coupling, where the condensate is in a finite-momentum plane-wave state with an intriguing roton minimum in its excitation spectrum. This novel polaron is formed by dressing the impurity with roton excitations, instead of phonon excitations as in a conventional (i.e., phonon-induced) Bose polaron, and acquires a significant center-of-mass momentum and highly anisotropic effective mass. We find that the roton-induced polaron evolves from a phonon-induced polaron, as the interaction between impurity and atoms increases across a Feshbach resonance. The evolution is not smooth, and a first-order phase transition from a phonon- to roton-induced polaron is observed at a critical interaction strength.
Collapse
Affiliation(s)
- Jia Wang
- Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122, Australia
| | - Xia-Ji Liu
- Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122, Australia
| | - Hui Hu
- Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122, Australia
| |
Collapse
|
34
|
Mukherjee B, Patel PB, Yan Z, Fletcher RJ, Struck J, Zwierlein MW. Spectral Response and Contact of the Unitary Fermi Gas. PHYSICAL REVIEW LETTERS 2019; 122:203402. [PMID: 31172778 DOI: 10.1103/physrevlett.122.203402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 06/09/2023]
Abstract
We measure radio frequency (rf) spectra of the homogeneous unitary Fermi gas at temperatures ranging from the Boltzmann regime through quantum degeneracy and across the superfluid transition. For all temperatures, a single spectral peak is observed. Its position smoothly evolves from the bare atomic resonance in the Boltzmann regime to a frequency corresponding to nearly one Fermi energy at the lowest temperatures. At high temperatures, the peak width reflects the scattering rate of the atoms, while at low temperatures, the width is set by the size of fermion pairs. Above the superfluid transition, and approaching the quantum critical regime, the width increases linearly with temperature, indicating non-Fermi-liquid behavior. From the wings of the rf spectra, we obtain the contact, quantifying the strength of short-range pair correlations. We find that the contact rapidly increases as the gas is cooled below the superfluid transition.
Collapse
Affiliation(s)
- Biswaroop Mukherjee
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Parth B Patel
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zhenjie Yan
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard J Fletcher
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julian Struck
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Département de Physique, Ecole Normale Supérieure / PSL Research University, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Martin W Zwierlein
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
35
|
Liu WE, Levinsen J, Parish MM. Variational Approach for Impurity Dynamics at Finite Temperature. PHYSICAL REVIEW LETTERS 2019; 122:205301. [PMID: 31172772 DOI: 10.1103/physrevlett.122.205301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 06/09/2023]
Abstract
We present a general variational principle for the dynamics of impurity particles immersed in a quantum-mechanical medium. By working within the Heisenberg picture and constructing approximate time-dependent impurity operators, we can take the medium to be in any mixed state, such as a thermal state. Our variational method is consistent with all conservation laws and, in certain cases, it is equivalent to a finite-temperature Green's function approach. As a demonstration of our method, we consider the dynamics of heavy impurities that have suddenly been introduced into a Fermi gas at finite temperature. Using approximate time-dependent impurity operators involving only one particle-hole excitation of the Fermi sea, we find that we can successfully model the results of recent Ramsey interference experiments on ^{40}K atoms in a ^{6}Li Fermi gas. We also show that our approximation agrees well with the exact solution for the Ramsey response of a fixed impurity at finite temperature. Our approach paves the way for the investigation of impurities with dynamical degrees of freedom in arbitrary quantum-mechanical mediums.
Collapse
Affiliation(s)
- Weizhe Edward Liu
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Jesper Levinsen
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Meera M Parish
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| |
Collapse
|
36
|
Darkwah Oppong N, Riegger L, Bettermann O, Höfer M, Levinsen J, Parish MM, Bloch I, Fölling S. Observation of Coherent Multiorbital Polarons in a Two-Dimensional Fermi Gas. PHYSICAL REVIEW LETTERS 2019; 122:193604. [PMID: 31144925 DOI: 10.1103/physrevlett.122.193604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 06/09/2023]
Abstract
We report on the experimental observation of multiorbital polarons in a two-dimensional Fermi gas of ^{173}Yb atoms formed by mobile impurities in the metastable ^{3}P_{0} orbital and a Fermi sea in the ground-state ^{1}S_{0} orbital. We spectroscopically probe the energies of attractive and repulsive polarons close to an orbital Feshbach resonance and characterize their coherence by measuring the quasiparticle residue. For all probed interaction parameters, the repulsive polaron is a long-lived quasiparticle with a decay rate more than 2 orders of magnitude below its energy. We formulate a many-body theory, which accurately treats the interorbital interactions in two dimensions and agrees well with the experimental results. Our work paves the way for the investigation of many-body physics in multiorbital ultracold Fermi gases.
Collapse
Affiliation(s)
- N Darkwah Oppong
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - L Riegger
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - O Bettermann
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - M Höfer
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - J Levinsen
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
| | - M M Parish
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
| | - I Bloch
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - S Fölling
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| |
Collapse
|
37
|
Mistakidis SI, Katsimiga GC, Koutentakis GM, Busch T, Schmelcher P. Quench Dynamics and Orthogonality Catastrophe of Bose Polarons. PHYSICAL REVIEW LETTERS 2019; 122:183001. [PMID: 31144905 DOI: 10.1103/physrevlett.122.183001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 06/09/2023]
Abstract
We monitor the correlated quench induced dynamical dressing of a spinor impurity repulsively interacting with a Bose-Einstein condensate. Inspecting the temporal evolution of the structure factor, three distinct dynamical regions arise upon increasing the interspecies interaction. These regions are found to be related to the segregated nature of the impurity and to the Ohmic character of the bath. It is shown that the impurity dynamics can be described by an effective potential that deforms from a harmonic to a double-well one when crossing the miscibility-immiscibility threshold. In particular, for miscible components the polaron formation is imprinted on the spectral response of the system. We further illustrate that for increasing interaction an orthogonality catastrophe occurs and the polaron picture breaks down. Then a dissipative motion of the impurity takes place leading to a transfer of energy to its environment. This process signals the presence of entanglement in the many-body system.
Collapse
Affiliation(s)
- S I Mistakidis
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - G C Katsimiga
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - G M Koutentakis
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Th Busch
- Quantum Systems Unit, OIST Graduate University, Onna, Okinawa 904-0495, Japan
| | - P Schmelcher
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
38
|
Yan Z, Patel PB, Mukherjee B, Fletcher RJ, Struck J, Zwierlein MW. Boiling a Unitary Fermi Liquid. PHYSICAL REVIEW LETTERS 2019; 122:093401. [PMID: 30932518 DOI: 10.1103/physrevlett.122.093401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 06/09/2023]
Abstract
We study the thermal evolution of a highly spin-imbalanced, homogeneous Fermi gas with unitarity limited interactions, from a Fermi liquid of polarons at low temperatures to a classical Boltzmann gas at high temperatures. Radio-frequency spectroscopy gives access to the energy, lifetime, and short-range correlations of Fermi polarons at low temperatures T. In this regime, we observe a characteristic T^{2} dependence of the spectral width, corresponding to the quasiparticle decay rate expected for a Fermi liquid. At high T, the spectral width decreases again towards the scattering rate of the classical, unitary Boltzmann gas, ∝T^{-1/2}. In the transition region between the quantum degenerate and classical regime, the spectral width attains its maximum, on the scale of the Fermi energy, indicating the breakdown of a quasiparticle description. Density measurements in a harmonic trap directly reveal the majority dressing cloud surrounding the minority spins and yield the compressibility along with the effective mass of Fermi polarons.
Collapse
Affiliation(s)
- Zhenjie Yan
- MIT-Harvard Center for Ultracold Atoms, Department of Physics, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Parth B Patel
- MIT-Harvard Center for Ultracold Atoms, Department of Physics, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Biswaroop Mukherjee
- MIT-Harvard Center for Ultracold Atoms, Department of Physics, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard J Fletcher
- MIT-Harvard Center for Ultracold Atoms, Department of Physics, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julian Struck
- MIT-Harvard Center for Ultracold Atoms, Department of Physics, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Département de Physique, Ecole Normale Supérieure/PSL Research University, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Martin W Zwierlein
- MIT-Harvard Center for Ultracold Atoms, Department of Physics, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
39
|
Mehboudi M, Lampo A, Charalambous C, Correa LA, García-March MÁ, Lewenstein M. Using Polarons for sub-nK Quantum Nondemolition Thermometry in a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2019; 122:030403. [PMID: 30735411 DOI: 10.1103/physrevlett.122.030403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Indexed: 06/09/2023]
Abstract
We introduce a novel minimally disturbing method for sub-nK thermometry in a Bose-Einstein condensate (BEC). Our technique is based on the Bose polaron model; namely, an impurity embedded in the BEC acts as the thermometer. We propose to detect temperature fluctuations from measurements of the position and momentum of the impurity. Crucially, these cause minimal backaction on the BEC and hence, realize a nondemolition temperature measurement. Following the paradigm of the emerging field of quantum thermometry, we combine tools from quantum parameter estimation and the theory of open quantum systems to solve the problem in full generality. We thus avoid any simplification, such as demanding thermalization of the impurity atoms, or imposing weak dissipative interactions with the BEC. Our method is illustrated with realistic experimental parameters common in many labs, thus showing that it can compete with state-of-the-art destructive techniques, even when the estimates are built from the outcomes of accessible (suboptimal) quadrature measurements.
Collapse
Affiliation(s)
- Mohammad Mehboudi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Aniello Lampo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Christos Charalambous
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Luis A Correa
- School of Mathematical Sciences and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Kavli Institute for Theoretical Physics University of California, Santa Barbara, California 93106, USA
| | - Miguel Ángel García-March
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Maciej Lewenstein
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA, Lluís Companys 23, E-08010 Barcelona, Spain
| |
Collapse
|
40
|
Rammelmüller L, Loheac AC, Drut JE, Braun J. Finite-Temperature Equation of State of Polarized Fermions at Unitarity. PHYSICAL REVIEW LETTERS 2018; 121:173001. [PMID: 30411942 DOI: 10.1103/physrevlett.121.173001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 06/08/2023]
Abstract
We study in a nonperturbative fashion the thermodynamics of a unitary Fermi gas over a wide range of temperatures and spin polarizations. To this end, we use the complex Langevin method, a first principles approach for strongly coupled systems. Specifically, we show results for the density equation of state, the magnetization, and the magnetic susceptibility. At zero polarization, our results agree well with state-of-the-art results for the density equation of state and with experimental data. At finite polarization and low fugacity, our results are in excellent agreement with the third-order virial expansion. In the fully quantum mechanical regime close to the balanced limit, the critical temperature for superfluidity appears to depend only weakly on the spin polarization.
Collapse
Affiliation(s)
- Lukas Rammelmüller
- Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, D-64289 Darmstadt, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | - Andrew C Loheac
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Joaquín E Drut
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jens Braun
- Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, D-64289 Darmstadt, Germany
- FAIR, Facility for Antiproton and Ion Research in Europe GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt, Germany
| |
Collapse
|
41
|
Horovitz B, Giamarchi T, Le Doussal P. Transconducting Transition for a Dynamic Boundary Coupled to Several Luttinger Liquids. PHYSICAL REVIEW LETTERS 2018; 121:166803. [PMID: 30387677 DOI: 10.1103/physrevlett.121.166803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Indexed: 06/08/2023]
Abstract
We study a dynamic boundary, e.g., a mobile impurity, coupled to N independent Tomonaga-Luttinger liquids (TLLs) each with interaction parameter K. We demonstrate that for N≥2 there is a quantum phase transition at K≥1/2, where the TLL phases lock together at the particle position, resulting in a nonzero transconductance equal to e^{2}/Nh. The transition line terminates for strong coupling at K=1-(1/N), consistent with results at large N. Another type of a dynamic boundary is a superconducting (or a Bose-Einstein condensate) grain coupled to N≥2 TLLs; here the transition signals also the onset of a relevant Josephson coupling.
Collapse
Affiliation(s)
- B Horovitz
- Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel
| | - T Giamarchi
- DPMC-MaNEP, University of Geneva, 24 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - P Le Doussal
- Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, PSL University CNRS, Sorbonne Universités, 24 rue Lhomond, 75231 Paris Cedex 05, France
| |
Collapse
|
42
|
Schmidt F, Mayer D, Bouton Q, Adam D, Lausch T, Spethmann N, Widera A. Quantum Spin Dynamics of Individual Neutral Impurities Coupled to a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2018; 121:130403. [PMID: 30312071 DOI: 10.1103/physrevlett.121.130403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 06/08/2023]
Abstract
We report on spin dynamics of individual, localized neutral impurities immersed in a Bose-Einstein condensate. Single cesium atoms are transported into a cloud of rubidium atoms and thermalize with the bath, and the ensuing spin exchange between localized impurities with quasispin F_{i}=3 and bath atoms with F_{b}=1 is resolved. Comparing our data to numerical simulations of spin dynamics, we find that, for gas densities in the Bose-Einstein condensate regime, the dynamics is dominated by the condensed fraction of the cloud. We spatially resolve the density overlap of impurities and gas by the spin population of impurities. Finally, we trace the coherence of impurities prepared in a coherent superposition of internal states when coupled to a gas of different densities. For our choice of states, we show that, despite high bath densities and, thus, fast thermalization rates, the impurity coherence is not affected by the bath, realizing a regime of sympathetic cooling while maintaining internal state coherence. Our work paves the way toward the nondestructive probing of quantum many-body systems via localized impurities.
Collapse
Affiliation(s)
- Felix Schmidt
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
| | - Daniel Mayer
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
| | - Quentin Bouton
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
| | - Daniel Adam
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
| | - Tobias Lausch
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
| | - Nicolas Spethmann
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
| | - Artur Widera
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
- Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, 67663 Kaiserslautern, Germany
| |
Collapse
|
43
|
Shkedrov C, Florshaim Y, Ness G, Gandman A, Sagi Y. High-Sensitivity rf Spectroscopy of a Strongly Interacting Fermi Gas. PHYSICAL REVIEW LETTERS 2018; 121:093402. [PMID: 30230882 DOI: 10.1103/physrevlett.121.093402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/25/2018] [Indexed: 06/08/2023]
Abstract
rf spectroscopy is one of the most powerful probing techniques in the field of ultracold gases. We report on a novel rf spectroscopy scheme with which we can detect very weak signals of only a few atoms. Using this method, we extended the experimentally accessible photon-energies range by an order of magnitude compared to previous studies. We directly verify a universal property of fermions with short-range interactions which is a power-law scaling of the rf spectrum tail all the way up to the interaction scale. We also determine, with high precision, the trap average contact parameter for different interaction strength. Finally, we employ our technique to precisely measure the binding energy of Feshbach molecules in an extended range of magnetic fields. These data are used to extract a new calibration of the Feshbach resonance between the two lowest energy levels of ^{40}K.
Collapse
Affiliation(s)
- Constantine Shkedrov
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yanay Florshaim
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Gal Ness
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Andrey Gandman
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yoav Sagi
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
44
|
Camacho-Guardian A, Peña Ardila LA, Pohl T, Bruun GM. Bipolarons in a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2018; 121:013401. [PMID: 30028169 DOI: 10.1103/physrevlett.121.013401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Mobile impurities in a Bose-Einstein condensate form quasiparticles called polarons. Here, we show that two such polarons can bind to form a bound bipolaron state. Its emergence is caused by an induced nonlocal interaction mediated by density oscillations in the condensate, and we derive using field theory an effective Schrödinger equation describing this for an arbitrarily strong impurity-boson interaction. We furthermore compare with quantum Monte Carlo simulations finding remarkable agreement, which underlines the predictive power of the developed theory. It is found that bipolaron formation typically requires strong impurity interactions beyond the validity of more commonly used weak-coupling approaches that lead to local Yukawa-type interactions. We predict that the bipolarons are observable in present experiments, and we describe a procedure to probe their properties.
Collapse
Affiliation(s)
- A Camacho-Guardian
- Center for Quantum Optics and Quantum Matter, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - L A Peña Ardila
- Center for Quantum Optics and Quantum Matter, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - T Pohl
- Center for Quantum Optics and Quantum Matter, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - G M Bruun
- Center for Quantum Optics and Quantum Matter, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| |
Collapse
|
45
|
Płodzień M, Sowiński T, Kokkelmans S. Simulating polaron biophysics with Rydberg atoms. Sci Rep 2018; 8:9247. [PMID: 29915263 PMCID: PMC6006159 DOI: 10.1038/s41598-018-27232-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/23/2018] [Indexed: 11/17/2022] Open
Abstract
Transport of excitations along proteins can be formulated in a quantum physics context, based on the periodicity and vibrational modes of the structures. Numerically exact solutions of the corresponding equations are very challenging to obtain on classical computers. Approximate solutions based on the Davydov ansatz have demonstrated the possibility of stabilized solitonic excitations along the protein, however, experimentally these solutions have never been directly observed. Here we propose an alternative study of biophysical transport phenomena based on a quantum simulator composed of a chain of ultracold dressed Rydberg atoms, which allows for a direct observation of the Davydov phenomena. We show that there is an experimentally accessible range of parameters where the system directly mimics the Davydov equations and their solutions. Moreover, we show that such a quantum simulator has access to the regime in between the small and large polaron regimes, which cannot be described perturbatively.
Collapse
Affiliation(s)
- Marcin Płodzień
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands. .,Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw, PL-02668, Poland.
| | - Tomasz Sowiński
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw, PL-02668, Poland
| | - Servaas Kokkelmans
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
46
|
Ravets S, Knüppel P, Faelt S, Cotlet O, Kroner M, Wegscheider W, Imamoglu A. Polaron Polaritons in the Integer and Fractional Quantum Hall Regimes. PHYSICAL REVIEW LETTERS 2018; 120:057401. [PMID: 29481149 DOI: 10.1103/physrevlett.120.057401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 11/26/2017] [Indexed: 06/08/2023]
Abstract
Elementary quasiparticles in a two-dimensional electron system can be described as exciton polarons since electron-exciton interactions ensures dressing of excitons by Fermi-sea electron-hole pair excitations. A relevant open question is the modification of this description when the electrons occupy flat bands and electron-electron interactions become prominent. Here, we perform cavity spectroscopy of a two-dimensional electron system in the strong coupling regime, where polariton resonances carry signatures of strongly correlated quantum Hall phases. By measuring the evolution of the polariton splitting under an external magnetic field, we demonstrate the modification of polaron dressing that we associate with filling factor dependent electron-exciton interactions.
Collapse
Affiliation(s)
- Sylvain Ravets
- Institute of Quantum Electroncis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Patrick Knüppel
- Institute of Quantum Electroncis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Stefan Faelt
- Institute of Quantum Electroncis, ETH Zürich, CH-8093 Zürich, Switzerland
- Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Ovidiu Cotlet
- Institute of Quantum Electroncis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Martin Kroner
- Institute of Quantum Electroncis, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | - Atac Imamoglu
- Institute of Quantum Electroncis, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
47
|
Guenther NE, Massignan P, Lewenstein M, Bruun GM. Bose Polarons at Finite Temperature and Strong Coupling. PHYSICAL REVIEW LETTERS 2018; 120:050405. [PMID: 29481182 DOI: 10.1103/physrevlett.120.050405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Indexed: 06/08/2023]
Abstract
A mobile impurity coupled to a weakly interacting Bose gas, a Bose polaron, displays several interesting effects. While a single attractive quasiparticle is known to exist at zero temperature, we show here that the spectrum splits into two quasiparticles at finite temperatures for sufficiently strong impurity-boson interaction. The ground state quasiparticle has minimum energy at T_{c}, the critical temperature for Bose-Einstein condensation, and it becomes overdamped when T≫T_{c}. The quasiparticle with higher energy instead exists only below T_{c}, since it is a strong mixture of the impurity with thermally excited collective Bogoliubov modes. This phenomenology is not restricted to ultracold gases, but should occur whenever a mobile impurity is coupled to a medium featuring a gapless bosonic mode with a large population for finite temperature.
Collapse
Affiliation(s)
- Nils-Eric Guenther
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Pietro Massignan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034 Barcelona, Spain
| | - Maciej Lewenstein
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Georg M Bruun
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| |
Collapse
|
48
|
Schmidt R, Knap M, Ivanov DA, You JS, Cetina M, Demler E. Universal many-body response of heavy impurities coupled to a Fermi sea: a review of recent progress. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:024401. [PMID: 29303118 DOI: 10.1088/1361-6633/aa9593] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this report we discuss the dynamical response of heavy quantum impurities immersed in a Fermi gas at zero and at finite temperature. Studying both the frequency and the time domain allows one to identify interaction regimes that are characterized by distinct many-body dynamics. From this theoretical study a picture emerges in which impurity dynamics is universal on essentially all time scales, and where the high-frequency few-body response is related to the long-time dynamics of the Anderson orthogonality catastrophe by Tan relations. Our theoretical description relies on different and complementary approaches: functional determinants give an exact numerical solution for time- and frequency-resolved responses, bosonization provides accurate analytical expressions at low temperatures, and the theory of Toeplitz determinants allows one to analytically predict response up to high temperatures. Using these approaches we predict the thermal decoherence rate of the fermionic system and prove that within the considered model the fastest rate of long-time decoherence is given by [Formula: see text]. We show that Feshbach resonances in cold atomic systems give access to new interaction regimes where quantum effects can prevail even in the thermal regime of many-body dynamics. The key signature of this phenomenon is a crossover between different exponential decay rates of the real-time Ramsey signal. It is shown that the physics of the orthogonality catastrophe is experimentally observable up to temperatures [Formula: see text] where it leaves its fingerprint in a power-law temperature dependence of thermal spectral weight and we review how this phenomenon is related to the physics of heavy ions in liquid [Formula: see text]He and the formation of Fermi polarons. The presented results are in excellent agreement with recent experiments on LiK mixtures, and we predict several new phenomena that can be tested using currently available experimental technology.
Collapse
Affiliation(s)
- Richard Schmidt
- Department of Physics, Harvard University, Cambridge MA 02138, United States of America. ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, United States of America. Institute of Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
49
|
DeSalvo BJ, Patel K, Johansen J, Chin C. Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2017; 119:233401. [PMID: 29286694 DOI: 10.1103/physrevlett.119.233401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 06/07/2023]
Abstract
We report on the formation of a stable quantum degenerate mixture of fermionic ^{6}Li and bosonic ^{133}Cs in an optical trap by sympathetic cooling near an interspecies Feshbach resonance. New regimes of quantum degenerate Bose-Fermi mixtures are identified. With moderate attractive interspecies interactions, we show that a degenerate Fermi gas of Li can be fully confined in a Cs Bose-Einstein condensate without external potentials. For stronger attraction where mean-field collapse is expected, no such instability is observed. Potential mechanisms to explain this phenomenon are discussed.
Collapse
Affiliation(s)
- B J DeSalvo
- James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Krutik Patel
- James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jacob Johansen
- James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Cheng Chin
- James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
50
|
Pérez-Espigares C, Marcuzzi M, Gutiérrez R, Lesanovsky I. Epidemic Dynamics in Open Quantum Spin Systems. PHYSICAL REVIEW LETTERS 2017; 119:140401. [PMID: 29053308 DOI: 10.1103/physrevlett.119.140401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 06/07/2023]
Abstract
We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.
Collapse
Affiliation(s)
- Carlos Pérez-Espigares
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Matteo Marcuzzi
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ricardo Gutiérrez
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Complex Systems Group, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| | - Igor Lesanovsky
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|