1
|
Ertel D, Busto D, Makos I, Schmoll M, Benda J, Ahmadi H, Moioli M, Frassetto F, Poletto L, Schröter CD, Pfeifer T, Moshammer R, Mašín Z, Patchkovskii S, Sansone G. Influence of nuclear dynamics on molecular attosecond photoelectron interferometry. SCIENCE ADVANCES 2023; 9:eadh7747. [PMID: 37647394 PMCID: PMC10468127 DOI: 10.1126/sciadv.adh7747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/19/2023] [Indexed: 09/01/2023]
Abstract
In extreme ultraviolet spectroscopy, the photoionization process occurring in a molecule due to the absorption of a single photon can trigger an ultrafast nuclear motion in the cation. Taking advantage of attosecond photoelectron interferometry, where the absorption of the extreme ultraviolet photon is accompanied by the exchange of an additional infrared quantum of light, one can investigate the influence of nuclear dynamics by monitoring the characteristics of the photoelectron spectra generated by the two-color field. Here, we show that attosecond photoelectron interferometry is sensitive to the nuclear response by measuring the two-color photoionization spectra in a mixture of methane (CH4) and deuteromethane (CD4). The effect of the different nuclear evolution in the two isotopologues manifests itself in the modification of the amplitude and contrast of the oscillations of the photoelectron peaks. Our work indicates that nuclear dynamics can affect the coherence properties of the electronic wave packet emitted by photoionization on a time scale as short as a few femtoseconds.
Collapse
Affiliation(s)
- Dominik Ertel
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - David Busto
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
- Department of Physics, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Ioannis Makos
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Marvin Schmoll
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Jakub Benda
- Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovǐkách 2, 180 00, Prague 8, Czech Republic
| | - Hamed Ahmadi
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Matteo Moioli
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Fabio Frassetto
- Istituto di Fotonica e Nanotecnologie, CNR, 35131 Padova, Italy
| | - Luca Poletto
- Istituto di Fotonica e Nanotecnologie, CNR, 35131 Padova, Italy
| | | | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | | | - Zdeněk Mašín
- Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovǐkách 2, 180 00, Prague 8, Czech Republic
| | | | - Giuseppe Sansone
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Ruberti M, Patchkovskii S, Averbukh V. Quantum coherence in molecular photoionization. Phys Chem Chem Phys 2022; 24:19673-19686. [PMID: 35946491 DOI: 10.1039/d2cp01562e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of onset and decay, as well as control of ultrafast quantum coherence in many-electron systems is in the focus of interest of attosecond physics. Interpretation of attosecond experiments detecting the ultrafast quantum coherence requires application of advanced theoretical and computational tools combining many-electron theory, description of the electronic continuum, including in the strong laser field scenario, as well as nuclear dynamics theory. This perspective reviews the recent theoretical advances in understanding the attosecond dynamics of quantum coherence in photoionized molecular systems and outlines possible future directions of theoretical and experimental study of coherence and entanglement in the attosecond regime.
Collapse
Affiliation(s)
- Marco Ruberti
- Imperial College London, Department of Physics, South Kensington Campus, London SW7 2AZ, UK.
| | | | - Vitali Averbukh
- Imperial College London, Department of Physics, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
3
|
Blavier M, Komarova K, Gonçalves CEM, Levine RD, Remacle F. Electronic Coherences Steer the Strong Isotope Effect in the Ultrafast Jahn-Teller Structural Rearrangement of Methane Cation upon Tunnel Ionization. J Phys Chem A 2021; 125:9495-9507. [PMID: 34677060 DOI: 10.1021/acs.jpca.1c06431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on fully quantum electronic-nuclear dynamics following sudden ionization from the neutral in the three lowest electronic states of the CH4+ and CD4+ cations. There is a strong Jahn-Teller effect in the Franck-Condon region, and we employ two nuclear degrees of freedom that span the internal coordinates involved in the Jahn-Teller coupling. The initial state results from tunneling ionization by a strong IR field which coherently pumps the three lowest states of the cation, D0, D1, and D2. The quantum dynamical simulations show that a strong isotope effect occurs when the ionization significantly accesses the D2 state of the cation in the Franck-Condon region. The computed isotope effect is larger than expected on the basis of the effective mass ratio. The strong effect is due to fast oscillations of the electronic coherences between the D2 and the D1 and D0 electronic states and their modulation by the nonadiabatic couplings before a significant onset of nuclear motion. The magnitude of the effect is similar to the one that we previously reported for a sudden photoionization process. A strong isotope effect has been observed in high harmonic spectroscopy studies of the very short time dynamics Jahn-Teller structural rearrangement of the methane cation upon sudden ionization.
Collapse
Affiliation(s)
- Martin Blavier
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium
| | - Ksenia Komarova
- The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Cayo E M Gonçalves
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium
| | - R D Levine
- The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.,Department of Chemistry and Biochemistry and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - F Remacle
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium.,The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
4
|
Extracting sub-cycle electronic and nuclear dynamics from high harmonic spectra. Sci Rep 2021; 11:2485. [PMID: 33510363 PMCID: PMC7844012 DOI: 10.1038/s41598-021-82232-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/15/2021] [Indexed: 11/08/2022] Open
Abstract
We present a new methodology for measuring few-femtosecond electronic and nuclear dynamics in both atoms and polyatomic molecules using multidimensional high harmonic generation (HHG) spectroscopy measurements, in which the spectra are recorded as a function of the laser intensity to form a two-dimensional data set. The method is applied to xenon atoms and to benzene molecules, the latter exhibiting significant fast nuclear dynamics following ionization. We uncover the signature of the sub-cycle evolution of the returning electron flux in strong-field ionized xenon atoms, implicit in the strong field approximation but not previously observed directly. We furthermore extract the nuclear autocorrelation function in strong field ionized benzene cations, which is determined to have a decay of [Formula: see text] fs, in good agreement with the [Formula: see text] fs obtained from direct dynamics variational multi-configuration Gaussian calculations. Our method requires minimal assumptions about the system, and is applicable even to un-aligned polyatomic molecules.
Collapse
|
5
|
Gonçalves CEM, Levine RD, Remacle F. Ultrafast geometrical reorganization of a methane cation upon sudden ionization: an isotope effect on electronic non-equilibrium quantum dynamics. Phys Chem Chem Phys 2021; 23:12051-12059. [PMID: 34008662 DOI: 10.1039/d1cp01029h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ultrafast structural, Jahn-Teller (JT) driven, electronic coherence mediated quantum dynamics in the CH4+ and CD4+ cations that follows sudden ionization using an XUV attopulse exhibits a strong isotope effect. The JT effect makes the methane cation unstable in the Td geometry of the neutral molecule. Upon the sudden ionization the cation is produced in a coherent superposition of three electronic states that are strongly coupled and neither is in equilibrium with the nuclei. In the ground state of the cation the few femtosecond structural rearrangement leads first to a geometrically less distorted D2d minimum followed by a geometrical reorganization to a shallow C2v minimum. The dynamics is computed for an ensemble of 8000 ions randomly oriented with respect to the polarization of the XUV pulse. The ratio, about 3, of the CD4+ to CH4+ autocorrelation functions, is in agreement with experimental measurements of high harmonic spectra. The high value of the ratio is attributed to the faster electronic coherence dynamics in CH4+.
Collapse
Affiliation(s)
- Cayo E M Gonçalves
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium.
| | - R D Levine
- The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - F Remacle
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium. and The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
6
|
Mondal T, Varandas AJC. Effect of initial vibrational excitation on the methane cation sub-femtosecond photodynamics. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1752403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- T. Mondal
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Hyderabad, India
- Department of Chemistry, Birla Institute of Technology & Science, Zuarinagar, Goa, India
| | - A. J. C. Varandas
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, People's Republic of China
- Department of Chemistry, and Chemistry Center, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Amini K, Biegert J, Calegari F, Chacón A, Ciappina MF, Dauphin A, Efimov DK, Figueira de Morisson Faria C, Giergiel K, Gniewek P, Landsman AS, Lesiuk M, Mandrysz M, Maxwell AS, Moszyński R, Ortmann L, Antonio Pérez-Hernández J, Picón A, Pisanty E, Prauzner-Bechcicki J, Sacha K, Suárez N, Zaïr A, Zakrzewski J, Lewenstein M. Symphony on strong field approximation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:116001. [PMID: 31226696 DOI: 10.1088/1361-6633/ab2bb1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagielloński, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the 'simple man's models' which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include high-harmonic generation (HHG), above-threshold ionization (ATI), and non-sequential multielectron ionization (NSMI). 'Simple man's models' provide both an intuitive basis for understanding the numerical solutions of the time-dependent Schrödinger equation and the motivation for the powerful analytic approximations generally known as the strong field approximation (SFA). In this paper we first review the SFA in the form developed by us in the last 25 years. In this approach the SFA is a method to solve the TDSE, in which the non-perturbative interactions are described by including continuum-continuum interactions in a systematic perturbation-like theory. In this review we focus on recent applications of the SFA to HHG, ATI and NSMI from multi-electron atoms and from multi-atom molecules. The main novel part of the presented theory concerns generalizations of the SFA to: (i) time-dependent treatment of two-electron atoms, allowing for studies of an interplay between electron impact ionization and resonant excitation with subsequent ionization; (ii) time-dependent treatment in the single active electron approximation of 'large' molecules and targets which are themselves undergoing dynamics during the HHG or ATI processes. In particular, we formulate the general expressions for the case of arbitrary molecules, combining input from quantum chemistry and quantum dynamics. We formulate also theory of time-dependent separable molecular potentials to model analytically the dynamics of realistic electronic wave packets for molecules in strong laser fields. We dedicate this work to the memory of Bertrand Carré, who passed away in March 2018 at the age of 60.
Collapse
Affiliation(s)
- Kasra Amini
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jayachander Rao B, Cho M. Effect of vibrational pre-excitation on sub-femtosecond structural evolution of water cation in 2A1 state. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Yue S, Fu S, Li J, Zhang X, Feng Y, Hu B, Du H. A redshift mechanism of high-order harmonics: Change of ionization energy. J Chem Phys 2018; 148:234304. [PMID: 29935501 DOI: 10.1063/1.5031210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We theoretically study the high-order harmonic generation of H2+ and its isotopes beyond the Born-Oppenheimer dynamics. It is surprising that the spectral redshift can still be observed in high harmonic spectra of H2+ driven by a sinusoidal laser pulse in which the trailing (leading) edge of the laser pulse is nonexistent. The results confirm that this spectral redshift originates from the reduction in ionization energy between recombination time and ionization time, which is obviously different from the nonadiabatic spectral redshift induced by the falling edge of the laser pulse. Additionally, the improved instantaneous frequency of harmonics by considering the changeable ionization energy can deeply verify our results. Therefore, this new mechanism must be taken into account when one uses the nonadiabatic spectral redshift to retrieve the nuclear motion.
Collapse
Affiliation(s)
- Shengjun Yue
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Silin Fu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Jinbin Li
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiao Zhang
- Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000, China
| | - Yongkang Feng
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Bitao Hu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Hongchuan Du
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Wörner HJ, Arrell CA, Banerji N, Cannizzo A, Chergui M, Das AK, Hamm P, Keller U, Kraus PM, Liberatore E, Lopez-Tarifa P, Lucchini M, Meuwly M, Milne C, Moser JE, Rothlisberger U, Smolentsev G, Teuscher J, van Bokhoven JA, Wenger O. Charge migration and charge transfer in molecular systems. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061508. [PMID: 29333473 PMCID: PMC5745195 DOI: 10.1063/1.4996505] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/25/2017] [Indexed: 05/12/2023]
Abstract
The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.
Collapse
Affiliation(s)
| | - Christopher A Arrell
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Natalie Banerji
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Majed Chergui
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Ursula Keller
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | | | - Elisa Liberatore
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pablo Lopez-Tarifa
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Chris Milne
- SwissFEL, Paul-Scherrer Institute, Villigen, Switzerland
| | - Jacques-E Moser
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ursula Rothlisberger
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Joël Teuscher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Oliver Wenger
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Lan P, Ruhmann M, He L, Zhai C, Wang F, Zhu X, Zhang Q, Zhou Y, Li M, Lein M, Lu P. Attosecond Probing of Nuclear Dynamics with Trajectory-Resolved High-Harmonic Spectroscopy. PHYSICAL REVIEW LETTERS 2017; 119:033201. [PMID: 28777593 DOI: 10.1103/physrevlett.119.033201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 06/07/2023]
Abstract
We report attosecond-scale probing of the laser-induced dynamics in molecules. We apply the method of high-harmonic spectroscopy, where laser-driven recolliding electrons on various trajectories record the motion of their parent ion. Based on the transient phase-matching mechanism of high-order harmonic generation, short and long trajectories contributing to the same harmonic order are distinguishable in both the spatial and frequency domains, giving rise to a one-to-one map between time and photon energy for each trajectory. The short and long trajectories in H_{2} and D_{2} are used simultaneously to retrieve the nuclear dynamics on the attosecond and ångström scale. Compared to using only short trajectories, this extends the temporal range of the measurement to one optical cycle. The experiment is also applied to methane and ammonia molecules.
Collapse
Affiliation(s)
- Pengfei Lan
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Marc Ruhmann
- Institute for Theoretical Physics and Centre for Quantum Engineering and Space-Time Research (QUEST), Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| | - Lixin He
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chunyang Zhai
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feng Wang
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaosong Zhu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingbin Zhang
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yueming Zhou
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Li
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Manfred Lein
- Institute for Theoretical Physics and Centre for Quantum Engineering and Space-Time Research (QUEST), Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| | - Peixiang Lu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Laboratory of Optical Information Technology, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
12
|
Jayachander Rao B, Varandas A. Sub-femtosecond nuclear dynamics and high-harmonic generation: Can muonated species be used as a probe of isotope effects? Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Mondal T, Varandas AJC. On Extracting Subfemtosecond Data from Femtosecond Quantum Dynamics Calculations: The Methane Cation. J Chem Theory Comput 2015; 10:3606-16. [PMID: 26588505 DOI: 10.1021/ct500388k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- T Mondal
- Departamento de Química, and Centro de Química, Universidade de Coimbra , 3004-535 Coimbra, Portugal.,Department of Chemistry, Birla Institute of Technology & Science , Pilani - K.K. Birla Goa Campus, Goa 403 726, India
| | - A J C Varandas
- Departamento de Química, and Centro de Química, Universidade de Coimbra , 3004-535 Coimbra, Portugal
| |
Collapse
|
14
|
Rao BJ, Varandas AJC. Effect of Initial Vibrational-State Excitation on Subfemtosecond Photodynamics of Water. J Phys Chem A 2015; 119:12367-75. [PMID: 26496069 DOI: 10.1021/acs.jpca.5b07593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We discuss the effect of initial vibrational-state excitation on the subfemtosecond photodynamics of water. Photoelectron spectra of Franck-Condon ionization to the (2)B1 state of the H2O(+) (D2O(+)) from the ground and several vibrationally excited states of the neutral are reported. Also calculated are ratios of the high-order harmonic generation (HHG) signals as a function of time for each initial vibrational state of the neutral molecule as predicted from the ratios of the square of the autocorrelation functions for D2O(+) and H2O(+). They reveal maxima as a function of time for each vibrational state of the neutral molecule. In turn, the HHG signals are found to be enhanced with vibrational excitation, with the calculated expectation values of the bond lengths and bond angle revealing quasiperiodic oscillations in time for all initial vibrational states of the neutral species. Although the bond lengths show only a marginal increase, the bond angle is found to be enhanced markedly by vibrational excitation, this being therefore responsible for the observed rise in the HHG signal.
Collapse
Affiliation(s)
- B Jayachander Rao
- Departamento de Química and Centro de Química, Universidade de Coimbra , 3004-535 Coimbra, Portugal
| | - A J C Varandas
- Departamento de Química and Centro de Química, Universidade de Coimbra , 3004-535 Coimbra, Portugal
| |
Collapse
|
15
|
Mondal T, Varandas AJC. Structural evolution of the methane cation in subfemtosecond photodynamics. J Chem Phys 2015; 143:014304. [PMID: 26156480 DOI: 10.1063/1.4922906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An ab initio quantum dynamics study has been performed to explore the structural rearrangement of ground state CH4 (+) in subfemtosecond resolved photodynamics. The method utilizes time-dependent wave-packet propagation on the X˜(2)T2 electronic manifold of the title cation in full dimensionality, including nonadiabatic coupling of the three electronic sheets. Good agreement is obtained with recent experiments [Baker et al., Science 312, 424 (2006)] which use high-order harmonic generation to probe the attosecond proton dynamics. The novel results provide direct theoretical support of the observations while unravelling the underlying details. With the geometrical changes obtained by calculating the expectation values of the nuclear coordinates as a function of time, the structural evolution is predicted to begin through activation of the totally symmetric a1 and doubly degenerate e modes. While the former retains the original Td symmetry of the cation, the Jahn-Teller active e mode conducts it to a D2d structure. At ∼1.85 fs, the intermediate D2d structure is further predicted to rearrange to local C2v minimum geometry via Jahn-Teller active bending vibrations of t2 symmetry.
Collapse
Affiliation(s)
- T Mondal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani - K. K. Birla Goa Campus, Zuarinagar, Goa 403 726, India
| | - A J C Varandas
- Departamento de Química, Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
16
|
Rao BJ, Varandas AJC. Subfemtosecond Quantum Nuclear Dynamics in Water Isotopomers. J Phys Chem A 2015; 119:4856-63. [DOI: 10.1021/acs.jpca.5b02129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B. Jayachander Rao
- Departamento de Quı́mica and Centro de Quı́mica, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - A. J. C. Varandas
- Departamento de Quı́mica and Centro de Quı́mica, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
17
|
Jayachander Rao B, Varandas AJC. Sub-femtosecond quantum dynamics of the strong-field ionization of water to the X ̃(2)B1 and Ã(2)A1 states of the cation. Phys Chem Chem Phys 2015; 17:6545-53. [PMID: 25660074 DOI: 10.1039/c4cp05549g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Motivated by recent efforts to achieve sub-femtosecond structural resolution in various molecular systems, we have performed a femtosecond quantum dynamics study of the water cation in the X ̃(2)B1 and Ã(2)A1 electronic states. Autocorrelation functions for H2O(+) and D2O(+) are calculated for such electronic states by solving numerically the time-dependent Schrödinger equation. From the ratio of the squared autocorrelation functions of D2O(+) and H2O(+), the high-order harmonic generation signals are calculated. Substantial vibrational dynamics is found in the Ã(2)A1 state as compared to the one in X ̃(2)B1, which supports recent experimental findings of Farrell et al., Phys. Rev. Lett., 2011, 107, 083001. Maxima in the above ratio are also predicted at ∼1.1 fs and ∼1.6 fs for the X ̃(2)B1 and Ã(2)A1 states, respectively. The expectation values of the positions of the atoms in H2O(+) as a function of time reveal a strong excitation of the bending mode in the Ã(2)A1 state, which explains the observed vibrational dynamics. The peaks in the ratios of the squared autocorrelation functions are also explained in terms of the evolving geometries of the water cation.
Collapse
Affiliation(s)
- B Jayachander Rao
- Departamento de Química and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal.
| | | |
Collapse
|
18
|
Patchkovskii S, Schuurman MS. Short-Time Dynamics at a Conical Intersection in High-Harmonic Spectroscopy. J Phys Chem A 2014; 118:12069-79. [DOI: 10.1021/jp5090444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Michael S. Schuurman
- Steacie Laboratories, National Research Council of Canada, 100
Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department
of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
19
|
Förster J, Saenz A. Theoretical study of the inversion motion of the ammonia cation with subfemtosecond resolution for high-harmonic spectroscopy. Chemphyschem 2013; 14:1438-44. [PMID: 23585248 DOI: 10.1002/cphc.201300180] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/25/2013] [Indexed: 11/10/2022]
Abstract
In a recent PACER (Probing Attosecond dynamics with Chirp-Encoded Recollisions) experiment on ammonia that comprises a comparison of the high-harmonic spectra of the isotopes NH3 and ND3, the nuclear dynamics of the created ammonia cation is traced with a time resolution of about 100 attoseconds. For modelling the experiment the autocorrelation functions between the neutral initial state and the ionic wave packet are extracted from experimental photoelectron spectra incorporating a correction for the geometry-dependent strong-field ionisation probability. Good agreement is found between model and experiment, but in addition an unexpected maximum in the autocorrelation ratio is predicted by the model, however occurring at 5 fs and thus outside the experimentally covered time interval. In this work the autocorrelation functions are calculated explicitly using a one-dimensional model for describing the inversion motion of ammonia and its cation, adopting a position-dependent mass for considering the coupling with the stretching mode of the hydrogen atoms in neutral ammonia. This results in a clear physical picture explaining the occurrence of the previously predicted maximum in the ratio of the autocorrelation functions. Furthermore, different initial states and two different ways of incorporating strong-field corrections to the Franck-Condon approximation are briefly discussed.
Collapse
Affiliation(s)
- Johann Förster
- AG Moderne Optik, Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany.
| | | |
Collapse
|
20
|
Kraus PM, Wörner HJ. Attosecond nuclear dynamics in the ammonia cation: relation between high-harmonic and photoelectron spectroscopies. Chemphyschem 2013; 14:1445-50. [PMID: 23576456 DOI: 10.1002/cphc.201201022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/16/2013] [Indexed: 11/06/2022]
Abstract
We report measurements of the umbrella motion in the ammonia cation on the attosecond time scale. The motion is prepared by strong-field ionization and probed by photorecombination through the process of high-harmonic generation. Performing such measurements at multiple wavelengths (0.8, 1.44, 1.8 μm) enables us to follow the nuclear dynamics over a broad temporal range (0.8-3.8 fs). The intensity of the driving field is found to have a significant impact on the observed dynamics through the vibrational-state dependence of the strong-field ionization rates. We derive a general model that includes these effects and establishes a new link between high-harmonic spectroscopy and classical photoelectron spectroscopy. Our model reproduces the observed dynamics and their dependence on the intensity of the driving field. Moreover, the model predicts much richer nuclear dynamics on the few-fs timescale than most previous theories. The newly predicted features are shown to reflect the quantized vibronic level structure of the molecular cation.
Collapse
Affiliation(s)
- Peter Michael Kraus
- Laboratorium für Physikalische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | |
Collapse
|
21
|
Molecular internal dynamics studied by quantum path interferences in high order harmonic generation. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
|
23
|
Bredtmann T, Chelkowski S, Bandrauk AD. Effect of Nuclear Motion on Molecular High Order Harmonic Pump Probe Spectroscopy. J Phys Chem A 2012; 116:11398-405. [DOI: 10.1021/jp3063977] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Timm Bredtmann
- Physikalische und Theoretische
Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin,
Germany
- Laboratoire de
Chimie Théorique,
Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - Szczepan Chelkowski
- Laboratoire de
Chimie Théorique,
Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - André D. Bandrauk
- Laboratoire de
Chimie Théorique,
Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| |
Collapse
|
24
|
Ning QC, Peng LY, Hou XF, Xu Z, Gong Q. Application of discrete variable representation to planar H2+ in strong xuv laser fields. J Chem Phys 2012; 137:094101. [PMID: 22957549 DOI: 10.1063/1.4748137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an efficient and accurate grid method to study the strong field dynamics of planar H(2)(+) under Born-Oppenheimer approximation. After introducing the elliptical coordinates to the planar H(2)(+), we show that the Coulomb singularities at the nuclei can be successfully overcome so that both bound and continuum states can be accurately calculated by the method of separation of variables. The time-dependent Schrödinger equation (TDSE) can be accurately solved by a two-dimensional discrete variable representation (DVR) method, where the radial coordinate is discretized with the finite-element discrete variable representation for easy parallel computation and the angular coordinate with the trigonometric DVR which can describe the periodicity in this direction. The bound states energies can be accurately calculated by the imaginary time propagation of TDSE, which agree very well with those computed by the separation of variables. We apply the TDSE to study the ionization dynamics of the planar H(2)(+) by short extreme ultra-violet (xuv) pulses, in which case the differential momentum distributions from both the length and the velocity gauge agree very well with those calculated by the lowest order perturbation theory.
Collapse
Affiliation(s)
- Qi-Cheng Ning
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
25
|
Salières P, Maquet A, Haessler S, Caillat J, Taïeb R. Imaging orbitals with attosecond and Ångström resolutions: toward attochemistry? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:062401. [PMID: 22790647 DOI: 10.1088/0034-4885/75/6/062401] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The recently developed attosecond light sources make the investigation of ultrafast processes in matter possible with unprecedented time resolution. It has been proposed that the very mechanism underlying the attosecond emission allows the imaging of valence orbitals with Ångström space resolution. This controversial idea together with the possibility of combining attosecond and Ångström resolutions in the same measurements has become a hot topic in strong-field science. Indeed, this could provide a new way to image the evolution of the molecular electron cloud during, e.g. a chemical reaction in 'real time'. Here we review both experimental and theoretical challenges raised by the implementation of these prospects. In particular, we show how the valence orbital structure is encoded in the spectral phase of the recombination dipole moment calculated for Coulomb scattering states, which allows a tomographic reconstruction of the orbital using first-order corrections to the plane-wave approach. The possibility of disentangling multi-channel contributions to the attosecond emission is discussed as well as the necessary compromise between the temporal and spatial resolutions.
Collapse
Affiliation(s)
- P Salières
- CEA-Saclay, IRAMIS, Service des Photons, Atomes et Molécules, 91191 Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
26
|
Farrell JP, Petretti S, Förster J, McFarland BK, Spector LS, Vanne YV, Decleva P, Bucksbaum PH, Saenz A, Gühr M. Strong field ionization to multiple electronic states in water. PHYSICAL REVIEW LETTERS 2011; 107:083001. [PMID: 21929165 DOI: 10.1103/physrevlett.107.083001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Indexed: 05/31/2023]
Abstract
High harmonic spectra show that laser-induced strong field ionization of water has a significant contribution from an inner-valence orbital. Our experiment uses the ratio of H(2)O and D(2)O high harmonic yields to isolate the characteristic nuclear motion of the molecular ionic states. The nuclear motion initiated via ionization of the highest occupied molecular orbital (HOMO) is small and is expected to lead to similar harmonic yields for the two isotopes. In contrast, ionization of the second least bound orbital (HOMO-1) exhibits itself via a strong bending motion which creates a significant isotope effect. We elaborate on this interpretation by solving the time-dependent Schrödinger equation to simulate strong field ionization and high harmonic generation from the water isotopes. We expect that this isotope marking scheme for probing excited ionic states in strong field processes can be generalized to other molecules.
Collapse
Affiliation(s)
- Joseph P Farrell
- Stanford PULSE Institute, SLAC National Accelerator Lab, 2575 Sand Hill Road, Menlo Park California 94025, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Strong-field control and spectroscopy of attosecond electron-hole dynamics in molecules. Proc Natl Acad Sci U S A 2009; 106:16556-61. [PMID: 19805337 DOI: 10.1073/pnas.0907434106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular structures, dynamics and chemical properties are determined by shared electrons in valence shells. We show how one can selectively remove a valence electron from either Pi vs. Sigma or bonding vs. nonbonding orbital by applying an intense infrared laser field to an ensemble of aligned molecules. In molecules, such ionization often induces multielectron dynamics on the attosecond time scale. Ionizing laser field also allows one to record and reconstruct these dynamics with attosecond temporal and sub-Angstrom spatial resolution. Reconstruction relies on monitoring and controlling high-frequency emission produced when the liberated electron recombines with the valence shell hole created by ionization.
Collapse
|
29
|
Wei P, Zhang C, Liu C, Huang Y, Leng Y, Liu P, Zheng Y, Zeng Z, Li R, Xu Z. Wavelength effect on atomic and molecular high harmonic generation driven by a tunable infrared parametric source. OPTICS EXPRESS 2009; 17:15061-15067. [PMID: 19687984 DOI: 10.1364/oe.17.015061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We experimentally investigate the wavelength effect on high-order harmonic generation (HHG) in CH(4) molecules and Xe atoms driven by a tunable infrared parametric source, and observe that the molecular HHG around the vibrational resonance is more sensitive to the driver wavelength than HHG from an atomic gas with comparable ionization potential. The results can be attributed to the light nuclear motion induced by the driving laser field, and it becomes possible to control the proton vibration in the molecular HHG by tuning the infrared wavelength of the driving laser.
Collapse
Affiliation(s)
- Pengfei Wei
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|