1
|
He A, Huang Y, Cao C, Li X. Advances in drug delivery systems utilizing blood cells and their membrane-derived microvesicles. Drug Deliv 2024; 31:2425156. [PMID: 39520082 PMCID: PMC11552282 DOI: 10.1080/10717544.2024.2425156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The advancement of drug delivery systems (DDSs) in recent decades has demonstrated significant potential in enhancing the efficacy of pharmacological agents. Despite the approval of certain DDSs for clinical use, challenges such as rapid clearance from circulation, toxic accumulation in the body, and ineffective targeted delivery persist as obstacles to successful clinical application. Blood cell-based DDSs have emerged as a popular strategy for drug administration, offering enhanced biocompatibility, stability, and prolonged circulation. These DDSs are well-suited for systemic drug delivery and have played a crucial role in formulating optimal drug combinations for treating a variety of diseases in both preclinical studies and clinical trials. This review focuses on recent advancements and applications of DDSs utilizing blood cells and their membrane-derived microvesicles. It addresses the current therapeutic applications of blood cell-based DDSs at the organ and tissue levels, highlighting their successful deployment at the cellular level. Furthermore, it explores the mechanisms of cellular uptake of drug delivery vectors at the subcellular level. Additionally, the review discusses the opportunities and challenges associated with these DDSs.
Collapse
Affiliation(s)
- Andong He
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Yuye Huang
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Sadeghi M. Investigating the entropic nature of membrane-mediated interactions driving the aggregation of peripheral proteins. SOFT MATTER 2022; 18:3917-3927. [PMID: 35543220 DOI: 10.1039/d2sm00118g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peripheral membrane-associated proteins are known to accumulate on the surface of biomembranes as a result of membrane-mediated interactions. For a pair of rotationally-symmetric curvature-inducing proteins, membrane mechanics at the low-temperature limit predicts pure repulsion. On the other hand, temperature-dependent entropic forces arise between pairs of stiff-binding proteins suppressing membrane fluctuations. These Casimir-like interactions have thus been suggested as candidates for attractive forces leading to aggregation. With dense assemblies of peripheral proteins on the membrane, both these abstractions encounter short-range and multi-body complications. Here, we make use of a particle-based membrane model augmented with flexible peripheral proteins to quantify purely membrane-mediated interactions and investigate their underlying nature. We introduce a continuous reaction coordinate corresponding to the progression of protein aggregation. We obtain free energy and entropy landscapes for different surface concentrations along this reaction coordinate. In parallel, we investigate time-dependent estimates of membrane entropy corresponding to membrane undulations and coarse-grained director field and how they change dynamically with protein aggregation. Congruent outcomes of the two approaches point to the conclusion that for low surface concentrations, interactions with an entropic nature may drive the aggregation. But at high concentrations, enthalpic contributions due to concerted membrane deformation by protein clusters are dominant.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany.
| |
Collapse
|
3
|
Chen T, Zhang Y, Li X, Li C, Lu T, Xiao S, Liang H. Curvature-Mediated Pair Interactions of Soft Nanoparticles Adhered to a Cell Membrane. J Chem Theory Comput 2021; 17:7850-7861. [PMID: 34865469 DOI: 10.1021/acs.jctc.1c00897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The curvature-mediated interactions by cell membranes are crucial in many biological processes. We systematically studied the curvature-mediated wrapping of soft nanoparticles (NPs) by a tensionless membrane and the underlying pair interactions between NPs in determining it. We found that there are three types of wrapping pathways, namely, independence, cooperation, and tubulation. The particle size, adhesion strength, and softness are found to be strongly related with the wrapping mechanism. Reducing the adhesion strength transforms the wrapping pathway from cooperation to independence, while enhancing the NP softness requires a stronger adhesion to achieve the cooperative wrapping. This transformation of the wrapping pathway is controlled by the curvature-mediated interactions between NPs. For either soft or rigid NPs, the pair interactions are repulsive at short-ranged distances between NPs, while at long-ranged distances, a larger adhesion between NPs and a membrane is needed to generate attraction between NPs. Moreover, an enhancement of NP softness weakens the repulsion between NPs. These distinct behaviors of soft NPs are ascribed to the gentler deformation of the membrane at the face-to-face region between NPs due to the flattening and spreading of soft NPs along the membrane, requiring a reduced energy cost for soft NPs to approach each other. Our results provide a mechanistic understanding in detail about the membrane-mediated interactions between NPs and their interactions with cell membranes, which is helpful to understand the curvature-mediated assemblies of adhesive proteins or NPs on membranes, and offer novel possibilities for designing an effective NP-based vehicle for controlled drug delivery.
Collapse
Affiliation(s)
- Tongwei Chen
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yunhan Zhang
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chengxu Li
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Teng Lu
- Computer Network Information Center of the Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Shiyan Xiao
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haojun Liang
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
4
|
Idema T, Kraft DJ. Interactions between model inclusions on closed lipid bilayer membranes. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Abstract
Cui reflects on new coarse-grained simulations demonstrating that mitochondrial ATP synthase dimers spontaneously self-associate.
Collapse
Affiliation(s)
- Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, Boston, MA
| |
Collapse
|
6
|
Abstract
Domain migration is observed on the surface of ternary giant unilamellar vesicles held in a temperature gradient in conditions where they exhibit coexistence of two liquid phases. The migration localizes domains to the hot side of the vesicle, regardless of whether the domain is composed of the more ordered or disordered phase and regardless of the proximity to chamber boundaries. The distribution of domains is explored for domains that coarsen and for those held apart due to long-range repulsions. After considering several potential mechanisms for the migration, including the temperature preferences for each lipid, the favored curvature for each phase, and the thermophoretic flow around the vesicle, we show that observations are consistent with the general process of minimizing the system's line tension energy, because of the lowering of line interface energy closer to mixing. DNA strands, attached to the lipid bilayer with cholesterol anchors, act as an exemplar "cargo," demonstrating that the directed motion of domains toward higher temperatures provides a route to relocate species that preferentially reside in the domains.
Collapse
|
7
|
Vahid A, Idema T. Pointlike Inclusion Interactions in Tubular Membranes. PHYSICAL REVIEW LETTERS 2016; 117:138102. [PMID: 27715092 DOI: 10.1103/physrevlett.117.138102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 06/06/2023]
Abstract
Membrane tubes and tubular networks are ubiquitous in living cells. Inclusions like proteins are vital for both the stability and the dynamics of such networks. These inclusions interact via the curvature deformations they impose on the membrane. We analytically study the resulting membrane mediated interactions in strongly curved tubular membranes. We model inclusions as constraints coupled to the curvature tensor of the membrane tube. First, as special test cases, we analyze the interaction between ring- and rod-shaped inclusions. Using Monte Carlo simulations, we further show how pointlike inclusions interact to form linear aggregates. To minimize the curvature energy of the membrane, inclusions self-assemble into either line- or ringlike patterns. Our results show that the global curvature of the membrane strongly affects the interactions between proteins embedded in it, and can lead to the spontaneous formation of biologically relevant structures.
Collapse
Affiliation(s)
- Afshin Vahid
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Timon Idema
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
8
|
Soft pinning of liquid domains on topographical hemispherical caps. Chem Phys Lipids 2015; 185:78-87. [DOI: 10.1016/j.chemphyslip.2014.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/01/2014] [Accepted: 07/06/2014] [Indexed: 11/18/2022]
|
9
|
Yoo J, Cui Q. Membrane-mediated protein-protein interactions and connection to elastic models: a coarse-grained simulation analysis of gramicidin A association. Biophys J 2013; 104:128-38. [PMID: 23332065 DOI: 10.1016/j.bpj.2012.11.3813] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 11/26/2022] Open
Abstract
To further foster the connection between particle based and continuum mechanics models for membrane mediated biological processes, we carried out coarse-grained (CG) simulations of gramicidin A (gA) dimer association and analyzed the results based on the combination of potential of mean force (PMF) and stress field calculations. Similar to previous studies, we observe that the association of gA dimers depends critically on the degree of hydrophobic mismatch, with the estimated binding free energy of >10 kcal/mol in a distearoylphosphatidylcholine bilayer. Qualitative trends in the computed PMF can be understood based on the stress field distributions near a single gA dimer and between a pair of gA dimers. For example, the small PMF barrier, which is ∼1 kcal/mol independent of lipid type, can be captured nearly quantitatively by considering membrane deformation energy associated with the region confined by two gA dimers. However, the PMF well depth is reproduced poorly by a simple continuum model that only considers membrane deformation energy beyond the annular lipids. Analysis of lipid orientation, configuration entropy, and stress distribution suggests that the annular lipids make a significant contribution to the association of two gA dimers. These results highlight the importance of explicitly considering contributions from annular lipids when constructing approximate models to study processes that involve a significant reorganization of lipids near proteins, such as protein-protein association and protein insertion into biomembranes. Finally, large-scale CG simulations indicate that multiple gA dimers also form clusters, although the preferred topology depends on the protein concentration. Even at high protein concentrations, every gA dimer requires contact to lipid hydrocarbons to some degree, and at most three to four proteins are in contact with each gA dimer; this observation highlights another aspect of the importance of interactions between proteins and annular lipids.
Collapse
Affiliation(s)
- Jejoong Yoo
- Graduate Program in Biophysics, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
10
|
Idema T, Storm C. Analytical expressions for the shape of axisymmetric membranes with multiple domains. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2011; 34:67. [PMID: 21751093 DOI: 10.1140/epje/i2011-11067-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/09/2011] [Accepted: 06/21/2011] [Indexed: 05/31/2023]
Abstract
Based on the Canham-Helfrich free energy, we derive analytical expressions for the shapes of axisymmetric membranes consisting of multiple domains. We give explicit equations for both closed vesicles and almost cylindrical tubes. Using these expressions, we also find the shape of a tube attached to a spherical vesicle. The resulting shapes compare well to numerical data, and our expressions can be used to easily determine membrane parameters from experimentally obtained shapes.
Collapse
Affiliation(s)
- T Idema
- Department of Physics and Astronomy, University of Pennsylvania, 209 S 33rd street, 19104 Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
11
|
Weise K, Kapoor S, Denter C, Nikolaus J, Opitz N, Koch S, Triola G, Herrmann A, Waldmann H, Winter R. Membrane-mediated induction and sorting of K-Ras microdomain signaling platforms. J Am Chem Soc 2010; 133:880-7. [PMID: 21141956 DOI: 10.1021/ja107532q] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The K-Ras4B GTPase is a major oncoprotein whose signaling activity depends on its correct localization to negatively charged subcellular membranes and nanoclustering in membrane microdomains. Selective localization and clustering are mediated by the polybasic farnesylated C-terminus of K-Ras4B, but the mechanisms and molecular determinants involved are largely unknown. In a combined chemical biological and biophysical approach we investigated the partitioning of semisynthetic fully functional lipidated K-Ras4B proteins into heterogeneous anionic model membranes and membranes composed of viral lipid extracts. Independent of GDP/GTP-loading, K-Ras4B is preferentially localized in liquid-disordered (l(d)) lipid domains and forms new protein-containing fluid domains that are recruiting multivalent acidic lipids by an effective, electrostatic lipid sorting mechanism. In addition, GDP-GTP exchange and, thereby, Ras activation results in a higher concentration of activated K-Ras4B in the nanoscale signaling platforms. Conversely, palmitoylated and farnesylated N-Ras proteins partition into the l(d) phase and concentrate at the l(d)/l(o) phase boundary of heterogeneous membranes. Next to the lipid anchor system, the results reveal an involvement of the G-domain in the membrane interaction process by determining minor but yet significant structural reorientations of the GDP/GTP-K-Ras4B proteins at lipid interfaces. A molecular mechanism for isoform-specific Ras signaling from separate membrane microdomains is postulated from the results of this study.
Collapse
Affiliation(s)
- Katrin Weise
- Physical Chemistry I, Biophysical Chemistry, Faculty of Chemistry, TU Dortmund University , Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|