1
|
Photoionization of Electrons in Degenerate Energy Level of Hydrogen Atom Induced by Strong Laser Pulses. PHOTONICS 2022. [DOI: 10.3390/photonics9040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Photoionization dynamics of bounded electrons in the ground state, the first and second excited states of a hydrogen atom, triggered by ultrashort near-infrared laser pulses, have been investigated in a transition regime (γ∼1) that offers both multiphoton and tunneling features. Significant differences in spectral characteristics are found between the three low-energy states. The H(2s) ionization probability is larger than the H(2p) value with a special oscillating structure, but both are much greater than the ground state H(1s) in a wide range of laser intensities. By comparing the momentum spectrum and angular distributions of low-energy photoelectrons released from these degenerate states, we find the H(2p) state shows a stronger long-range Coulomb attraction force than the H(2s) state on account of the difference in the initial electron wave packet. Furthermore, analysis of the photoelectron momentum distributions sheds light on both the first and second excited states with a symmetrical intercycle interference structure in a multicycle field but an intracycle interference of an asymmetric left-handed or right-handed rotating spectrum in a few-cycle field. By analyzing photoelectron spectroscopy, we identify the parity characteristics of photoelectrons in different energy intervals and their corresponding above-threshold single-photon ionization (ATSI) or above-threshold double-photon ionization (ATDI) processes. We finally present the momentum distributions of the electrons ionized by laser pulses with different profiles and find the carrier-envelope phase (CEP) is a strong factor in deciding the rotating structure of the emission spectrum, which provides a new method to distinguish the CEP of few-cycle pulses.
Collapse
|
2
|
Photoelectron Angular Distributions of Nonresonant Two-Photon Atomic Ionization Near Nonlinear Cooper Minima. ATOMS 2020. [DOI: 10.3390/atoms8030054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Photoelectron angular distributions of the two-photon ionization of neutral atoms are theoretically investigated. Numerical calculations of two-photon ionization cross sections and asymmetry parameters are carried out within the independent-particle approximation and relativistic second-order perturbation theory. The dependence of the asymmetry parameters on the polarization and energy of the incident light as well as on the angular momentum properties of the ionized electron are investigated. While dynamic variations of the angular distributions at photon energies near intermediate level resonances are expected, we demonstrate that equally strong variations occur near the nonlinear Cooper minimum. The described phenomena is demonstrated on the example of two-photon ionization of magnesium atom.
Collapse
|
3
|
Fushitani M, Sasaki Y, Matsuda A, Fujise H, Kawabe Y, Hashigaya K, Owada S, Togashi T, Nakajima K, Yabashi M, Hikosaka Y, Hishikawa A. Multielectron-Ion Coincidence Spectroscopy of Xe in Extreme Ultraviolet Laser Fields: Nonlinear Multiple Ionization via Double Core-Hole States. PHYSICAL REVIEW LETTERS 2020; 124:193201. [PMID: 32469563 DOI: 10.1103/physrevlett.124.193201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Ultrafast multiphoton ionization of Xe in strong extreme ultraviolet free-electron laser (FEL) fields (91 eV, 30 fs, 1.6×10^{12} W/cm^{2}) has been investigated by multielectron-ion coincidence spectroscopy. The electron spectra recorded in coincidence with Xe^{4+} show characteristic features associated with two-photon absorption to the 4d^{-2} double core-hole (DCH) states and subsequent Auger decay. It is found that the pathway via the DCH states, which has eluded clear identification in previous studies, makes a large contribution to the multiple ionization, despite the long FEL pulse duration compared with the lifetime of the 4d core-hole states.
Collapse
Affiliation(s)
- M Fushitani
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- RIKEN, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Y Sasaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - A Matsuda
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- RIKEN, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - H Fujise
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- RIKEN, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Y Kawabe
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - K Hashigaya
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - S Owada
- RIKEN, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - T Togashi
- RIKEN, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - K Nakajima
- RIKEN, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - M Yabashi
- RIKEN, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Y Hikosaka
- RIKEN, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Institute of Liberal Arts and Sciences, University of Toyama, Toyama 930-0194, Japan
| | - A Hishikawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- RIKEN, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Research Center for Materials Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
4
|
Borisov AB, McCorkindale JC, Poopalasingam S, Longworth JW, Simon P, Szatmári S, Rhodes CK. Rewriting the rules governing high intensity interactions of light with matter. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:046401. [PMID: 27007146 DOI: 10.1088/0034-4885/79/4/046401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The trajectory of discovery associated with the study of high-intensity nonlinear radiative interactions with matter and corresponding nonlinear modes of electromagnetic propagation through material that have been conducted over the last 50 years can be presented as a landscape in the intensity/quantum energy [I-ħω] plane. Based on an extensive series of experimental and theoretical findings, a universal zone of anomalous enhanced electromagnetic coupling, designated as the fundamental nonlinear domain, can be defined. Since the lower boundaries of this region for all atomic matter correspond to ħω ~ 10(3) eV and I ≈ 10(16) W cm(-2), it heralds a future dominated by x-ray and γ-ray studies of all phases of matter including nuclear states. The augmented strength of the interaction with materials can be generally expressed as an increase in the basic electromagnetic coupling constant in which the fine structure constant α → Z(2)α, where Z denotes the number of electrons participating in an ordered response to the driving field. Since radiative conditions strongly favoring the development of this enhanced electromagnetic coupling are readily produced in self-trapped plasma channels, the processes associated with the generation of nonlinear interactions with materials stand in natural alliance with the nonlinear mechanisms that induce confined propagation. An experimental example involving the Xe (4d(10)5s(2)5p(6)) supershell for which Z ≅ 18 that falls in the specified anomalous nonlinear domain is described. This yields an effective coupling constant of Z(2)α ≅ 2.4 > 1, a magnitude comparable to the strong interaction and a value rendering as useless conventional perturbative analyses founded on an expansion in powers of α. This enhancement can be quantitatively understood as a direct consequence of the dominant role played by coherently driven multiply-excited states in the dynamics of the coupling. It is also conclusively demonstrated by an abundance of data that the utterly peerless champion of the experimental campaign leading to the definition of the fundamental nonlinear domain was excimer laser technology. The basis of this unique role was the ability to satisfy simultaneously a triplet (ω, I, P) of conditions stating the minimal values of the frequency ω, intensity I, and the power P necessary to enable the key physical processes to be experimentally observed and controllably combined. The historical confluence of these developments creates a solid foundation for the prediction of future advances in the fundamental understanding of ultra-high power density states of matter. The atomic findings graciously generalize to the composition of a nuclear stanza expressing the accessibility of the nuclear domain. With this basis serving as the launch platform, a cadenza of three grand challenge problems representing both new materials and new interactions is presented for future solution; they are (1) the performance of an experimental probe of the properties of the vacuum state associated with the dark energy at an intensity approaching the Schwinger/Heisenberg limit, (2) the attainment of amplification in the γ-ray region (~1 MeV) and the discovery of a nuclear excimer, and (3) the determination of a path to the projected super-heavy nuclear island of stability.
Collapse
Affiliation(s)
- Alex B Borisov
- Laboratory for X-Ray Microimaging and Bioinformatics, Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Mazza T, Karamatskou A, Ilchen M, Bakhtiarzadeh S, Rafipoor AJ, O'Keeffe P, Kelly TJ, Walsh N, Costello JT, Meyer M, Santra R. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation. Nat Commun 2015; 6:6799. [PMID: 25854939 PMCID: PMC4403373 DOI: 10.1038/ncomms7799] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/02/2015] [Indexed: 11/15/2022] Open
Abstract
Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources. Electrons in atoms exhibit many-body collective behaviours that can be studied by highbrightness X-rays from FELs. Here, the authors examine two-photon above threshold ionization of xenon and find that nonlinearities in the response uncover that more than one state underpins the 4d giant resonance.
Collapse
Affiliation(s)
- T Mazza
- European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - A Karamatskou
- 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - M Ilchen
- 1] European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany [2] Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - S Bakhtiarzadeh
- 1] European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany [2] Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - A J Rafipoor
- 1] European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany [2] Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - P O'Keeffe
- CNR Istituto di Struttura della Materia, CP10, I-00016 Monterotondo Scalo, Italy
| | - T J Kelly
- School of Physical Sciences and NCPST, Dublin City University, Dublin 9, Ireland
| | - N Walsh
- School of Physical Sciences and NCPST, Dublin City University, Dublin 9, Ireland
| | - J T Costello
- School of Physical Sciences and NCPST, Dublin City University, Dublin 9, Ireland
| | - M Meyer
- European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - R Santra
- 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| |
Collapse
|
6
|
Doumy G, Roedig C, Son SK, Blaga CI, DiChiara AD, Santra R, Berrah N, Bostedt C, Bozek JD, Bucksbaum PH, Cryan JP, Fang L, Ghimire S, Glownia JM, Hoener M, Kanter EP, Krässig B, Kuebel M, Messerschmidt M, Paulus GG, Reis DA, Rohringer N, Young L, Agostini P, DiMauro LF. Nonlinear atomic response to intense ultrashort x rays. PHYSICAL REVIEW LETTERS 2011; 106:083002. [PMID: 21405568 DOI: 10.1103/physrevlett.106.083002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Indexed: 05/11/2023]
Abstract
The nonlinear absorption mechanisms of neon atoms to intense, femtosecond kilovolt x rays are investigated. The production of Ne(9+) is observed at x-ray frequencies below the Ne(8+), 1s(2) absorption edge and demonstrates a clear quadratic dependence on fluence. Theoretical analysis shows that the production is a combination of the two-photon ionization of Ne(8+) ground state and a high-order sequential process involving single-photon production and ionization of transient excited states on a time scale faster than the Auger decay. We find that the nonlinear direct two-photon ionization cross section is orders of magnitude higher than expected from previous calculations.
Collapse
Affiliation(s)
- G Doumy
- The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|