1
|
Das R, Kirkpatrick TR, Thirumalai D. Collective dynamic length increases monotonically in pinned and unpinned glass forming systems. J Chem Phys 2025; 162:054504. [PMID: 39902698 DOI: 10.1063/5.0241501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
The Random First-Order Transition (RFOT) theory predicts that transport proceeds by the cooperative movement of particles in domains, whose sizes increase as a liquid is compressed above a characteristic volume fraction, ϕd. The rounded dynamical transition around ϕd, which signals a crossover to activated transport, is accompanied by a growing correlation length that is predicted to diverge at the thermodynamic glass transition density (>ϕd). Simulations and imaging experiments probed the single particle dynamics of mobile particles in response to pinning all the particles in a semi-infinite space or randomly pinning (RP) a fraction of particles in a liquid at equilibrium. The extracted dynamic length increases non-monotonically with a peak around ϕd, which not only depends on the pinning method but is also different from ϕd of the actual liquid. This finding is at variance with the results obtained using the small wavelength limit of a four-point structure factor for unpinned systems. To obtain a consistent picture of the growth of the dynamic length, one that is impervious to the use of RP, we introduce a multiparticle structure factor, Smpc(q,t), that probes collective dynamics. The collective dynamical length, calculated from the small wave vector limit of Smpc(q,t), increases monotonically as a function of the volume fraction in a glass-forming binary mixture of charged colloidal particles in both unpinned and pinned systems. This prediction, which also holds in the presence of added monovalent salt, may be validated using imaging experiments.
Collapse
Affiliation(s)
- Rajsekhar Das
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - T R Kirkpatrick
- Institute for Physical Science and Technology, The University of Maryland, College Park, Maryland 20742, USA
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
2
|
Herrero C, Berthier L. Direct Numerical Analysis of Dynamic Facilitation in Glass-Forming Liquids. PHYSICAL REVIEW LETTERS 2024; 132:258201. [PMID: 38996241 DOI: 10.1103/physrevlett.132.258201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/21/2024] [Indexed: 07/14/2024]
Abstract
We propose a computational strategy to quantify the temperature evolution of the timescales and length scales over which dynamic facilitation affects the relaxation dynamics of glass-forming liquids at low temperatures, which requires no assumption about the nature of the dynamics. In two glass models, we find that dynamic facilitation depends strongly on temperature, leading to a subdiffusive spreading of relaxation events which we characterize using a temperature-dependent dynamic exponent. We also establish that this temperature evolution represents a major contribution to the increase of the structural relaxation time.
Collapse
|
3
|
Vaibhav V, Dutta S. Entropic timescales of dynamic heterogeneity in supercooled liquid. Phys Rev E 2024; 109:L062102. [PMID: 39020902 DOI: 10.1103/physreve.109.l062102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Non-Gaussian displacement distributions are universal predictors of dynamic heterogeneity in slowly varying environments. Here, we explore heterogeneous dynamics in supercooled liquid using molecular dynamics simulations and show the efficiency of the relative-entropy based measure, negentropy, in quantifying dynamic heterogeneity over the widely used non-Gaussian parameter. Our analysis shows that the heterogeneity quantified by the negentropy is significantly different from the one obtained using the conventional moment-based definition that considers deviation from Gaussianity up to lower-order moments. We extract the timescales of dynamic heterogeneity using the two methods and show that the differential changes diverge as the system experiences strong intermittency near the glass transition. Further, we interpret the entropic timescales and discuss the general implications of our work.
Collapse
|
4
|
Das R, Bhowmik BP, Puthirath AB, Narayanan TN, Karmakar S. Soft pinning: Experimental validation of static correlations in supercooled molecular glass-forming liquids. PNAS NEXUS 2023; 2:pgad277. [PMID: 37680690 PMCID: PMC10482383 DOI: 10.1093/pnasnexus/pgad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Enormous enhancement in the viscosity of a liquid near its glass transition is a hallmark of glass transition. Within a class of theoretical frameworks, it is connected to growing many-body static correlations near the transition, often called "amorphous ordering." At the same time, some theories do not invoke the existence of such a static length scale in the problem. Thus, proving the existence and possible estimation of the static length scales of amorphous order in different glass-forming liquids is very important to validate or falsify the predictions of these theories and unravel the true physics of glass formation. Experiments on molecular glass-forming liquids become pivotal in this scenario as the viscosity grows several folds (∼ 10 14 ), and simulations or colloidal glass experiments fail to access these required long-time scales. Here we design an experiment to extract the static length scales in molecular liquids using dilute amounts of another large molecule as a pinning site. Results from dielectric relaxation experiments on supercooled Glycerol with different pinning concentrations of Sorbitol and Glucose, as well as the simulations on a few model glass-forming liquids with pinning sites, indicate the versatility of the proposed method, opening possible new avenues to study the physics of glass transition in other molecular liquids.
Collapse
Affiliation(s)
- Rajsekhar Das
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Bhanu Prasad Bhowmik
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anand B Puthirath
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Tharangattu N Narayanan
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Smarajit Karmakar
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
5
|
Jung G, Biroli G, Berthier L. Predicting Dynamic Heterogeneity in Glass-Forming Liquids by Physics-Inspired Machine Learning. PHYSICAL REVIEW LETTERS 2023; 130:238202. [PMID: 37354408 DOI: 10.1103/physrevlett.130.238202] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/07/2023] [Accepted: 05/17/2023] [Indexed: 06/26/2023]
Abstract
We introduce GlassMLP, a machine learning framework using physics-inspired structural input to predict the long-time dynamics in deeply supercooled liquids. We apply this deep neural network to atomistic models in 2D and 3D. Its performance is better than the state of the art while being more parsimonious in terms of training data and fitting parameters. GlassMLP quantitatively predicts four-point dynamic correlations and the geometry of dynamic heterogeneity. Transferability across system sizes allows us to efficiently probe the temperature evolution of spatial dynamic correlations, revealing a profound change with temperature in the geometry of rearranging regions.
Collapse
Affiliation(s)
- Gerhard Jung
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
6
|
Pandit RK, Flenner E, Castillo HE. Single-particle fluctuations dominate the long-time dynamic susceptibility in glass-forming liquids. Phys Rev E 2022; 105:014605. [PMID: 35193298 DOI: 10.1103/physreve.105.014605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Liquids near the glass transition exhibit dynamical heterogeneity, i.e., correlated regions in the liquid relax at either a much faster rate or a much slower rate than the average. This collective phenomenon has been characterized by measurements of a dynamic susceptibility χ_{4}(t), which is sometimes interpreted in terms of the size of those relaxing regions and the intensity of the fluctuations. We show that the results of those measurements can be affected not only by the collective fluctuations in the relaxation rate, but also by density fluctuations in the initial state and by single-particle fluctuations. We also show that at very long times the average overlap C(t) probing the similarity between an initial and a final state separated by a time interval t decays as a power law C(t)∼t^{-d/2}. This is much slower than the stretched exponential behavior C(t)∼e^{-(t/τ)^{β}} previously observed at times within one or two orders of magnitude of the α-relaxation time τ_{α}. We find that for times longer than 10-100τ_{α}, the dynamic susceptibility χ_{4}(t) is dominated by single-particle fluctuations, and that χ_{4}(t)≈C(t)∼t^{-d/2}. Finally, we introduce a method to extract the collective relaxation contribution to the dynamic susceptibility χ_{4}(t) by subtracting the effects of single-particle fluctuations and initial state density fluctuations. We apply this method to numerical simulations of two glass-forming models: a binary hard sphere system and a Kob-Andersen Lennard-Jones system. This allows us to extend the analysis of numerical data to timescales much longer than previously possible, and opens the door for further future progress in the study of dynamic heterogeneities, including the determination of the exchange time.
Collapse
Affiliation(s)
- Rajib K Pandit
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Horacio E Castillo
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
7
|
Ghoshal D, Joy A. Connecting relaxation time to a dynamical length scale in athermal active glass formers. Phys Rev E 2021; 102:062605. [PMID: 33465951 DOI: 10.1103/physreve.102.062605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 11/07/2022]
Abstract
Supercooled liquids display dynamics that are inherently heterogeneous in space. This essentially means that at temperatures below the melting point, particle dynamics in certain regions of the liquid can be orders of magnitude faster than other regions. Often dubbed dynamical heterogeneity, this behavior has fascinated researchers involved in the study of glass transition for over two decades. A fundamentally important question in all glass transition studies is whether one can connect the growing relaxation time to a concomitantly growing length scale. In this paper, we go beyond the realm of ordinary glass forming liquids and study the origin of a growing dynamical length scale ξ in a self-propelled "active" glass former. This length scale, which is constructed using structural correlations, agrees well with the average size of the clusters of slow-moving particles that are formed as the liquid becomes spatially heterogeneous. We further report that the concomitantly growing α-relaxation time exhibits a simple scaling law, τ_{α}∼exp(μξ/T_{eff}), with μ as an effective chemical potential, T_{eff} as the effective temperature, and μξ as the growing free energy barrier for cluster rearrangements. The findings of our study are valid over four decades of persistence times, and hence they could be very useful in understanding the slow dynamics of a generic active liquid such as an active colloidal suspension, or a self-propelled granular medium.
Collapse
Affiliation(s)
- Dipanwita Ghoshal
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Ashwin Joy
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
8
|
Cho HW, Mugnai ML, Kirkpatrick TR, Thirumalai D. Fragile-to-strong crossover, growing length scales, and dynamic heterogeneity in Wigner glasses. Phys Rev E 2020; 101:032605. [PMID: 32290023 DOI: 10.1103/physreve.101.032605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
Colloidal particles, which are ubiquitous, have become ideal testing grounds for the structural glass transition theories. In these systems glassy behavior arises as the density of the particles is increased. Thus, soft colloidal particles with varying degree of softness capture diverse glass-forming properties, observed normally in molecular glasses. Brownian dynamics simulations for a binary mixture of micron-sized charged colloidal suspensions show that tuning the softness of the interaction potential, achievable by changing the monovalent salt concentration results in a continuous transition from fragile to strong behavior. Remarkably, this is found in a system where the well characterized interaction potential between the colloidal particles is isotropic. We also show that the predictions of the random first-order transition (RFOT) theory quantitatively describes the universal features such as the growing correlation length, ξ∼(ϕ_{K}/ϕ-1)^{-ν} with ν=2/3 where ϕ_{K}, the analog of the Kauzmann temperature, depends on the salt concentration. As anticipated by the RFOT predictions, we establish a causal relationship between the growing correlation length and a steep increase in the relaxation time and dynamic heterogeneity as the system is compressed. The broad range of fragility observed in Wigner glasses is used to draw analogies with molecular and polymer glasses. The large variations in the fragility are normally found only when the temperature dependence of the viscosity is examined for a large class of diverse glass-forming materials. In sharp contrast, this is vividly illustrated in a single system that can be experimentally probed. Our work also shows that the RFOT predictions are accurate in describing the dynamics over the entire density range, regardless of the fragility of the glasses.
Collapse
Affiliation(s)
- Hyun Woo Cho
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Mauro L Mugnai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - T R Kirkpatrick
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
9
|
Li SJ, Qian HJ, Lu ZY. A comparative study on the dynamic heterogeneity of supercooled polymers under nanoconfinement. Phys Chem Chem Phys 2019; 21:15888-15898. [PMID: 31287116 DOI: 10.1039/c9cp02550b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dynamic heterogeneity (DH) is a universal property of glass transition phenomena. In this work, we perform a comparative analysis of DH for pure polymer and polymer/nanoparticle composite systems in both film and bulk states via molecular dynamics simulations. We find that the dynamic gradient and the faster average dynamics due to the presence of a free surface are two leading factors, resulting from a nanoconfinement effect, which influence different parts of DH in a film system. The dynamic gradient results from differences in dynamics at different distances from the mobile surface, which induces a large deviation from the Gaussian distribution for the displacement distribution in the film. At the same time, the maximum string size which describes the region size for cooperative motion (dynamic correlation) can also be influenced by the dynamic gradient, although this influence is much weaker than that on the displacement distribution. On the other hand, reflecting temporal fluctuations of dynamics or temporal parts of DH, characteristic peak times of the non-Gaussian parameter and string size, and the ratio between persistent times and exchange times which describe the dynamic exchange properties, are mainly influenced by the faster dynamics on average. Our results demonstrate that measuring different properties (dynamic distribution, dynamic correlation or dynamic exchange) place an emphasis on distinct temporal and spatial parts of DH. It is necessary to use combinational measurements of these properties to give a complete picture of DH in nanoconfinement environments.
Collapse
Affiliation(s)
- Shu-Jia Li
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| |
Collapse
|
10
|
Pan D, Sun ZY. Influence of chain stiffness on the dynamical heterogeneity and fragility of polymer melts. J Chem Phys 2018; 149:234904. [DOI: 10.1063/1.5052153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Deng Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Chinese Academy of Sciences, Beijing 100039, China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| |
Collapse
|
11
|
Kuon N, Flenner E, Szamel G. Comparison of single particle dynamics at the center and on the surface of equilibrium glassy films. J Chem Phys 2018; 149:074501. [PMID: 30134663 DOI: 10.1063/1.5039505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glasses prepared by vapor depositing molecules onto a properly prepared substrate can have enhanced kinetic stability when compared with glasses prepared by cooling from the liquid state. The enhanced stability is due to the high mobility of particles at the surface, which allows them to find lower energy configurations than for liquid cooled glasses. Here we use molecular dynamics simulations to examine the temperature dependence of the single particle dynamics in the bulk of the film and at the surface of the film. First, we examine the temperature dependence of the self-intermediate scattering functions for particles in the bulk and at the surface. We then examine the temperature dependence of the probability of the logarithm of single particle displacements for bulk and surface particles. Both bulk and surface particle displacements indicate populations of slow and fast particles, i.e., heterogeneous dynamics. We find that the temperature dependence of the surface dynamics mirrors the bulk despite being several orders of magnitude faster.
Collapse
Affiliation(s)
- Nicholas Kuon
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| | - Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| |
Collapse
|
12
|
Furukawa A. Growing length scale accompanying vitrification: A perspective based on nonsingular density fluctuations. Phys Rev E 2018; 97:022615. [PMID: 29548253 DOI: 10.1103/physreve.97.022615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 11/07/2022]
Abstract
A model for describing growing length scale accompanying the vitrification is introduced, in which we assume that in a subsystem whose density is above a certain threshold value, ρ_{c}, due to steric constraints, particle rearrangements are highly suppressed for a sufficiently long time period (∼structural relaxation time). We regard such a subsystem as a glassy cluster. With this assumption and without introducing any complicated thermodynamic arguments, we predict that with compression (increasing average density ρ) at a fixed temperature T in supercooled states, the characteristic length of the clusters, ξ, diverges as ξ∼(ρ_{c}-ρ)^{-2/d}, where d is the spatial dimensionality. This ξ measures the average persistence length of the steric constraints in blocking the rearrangement motions and is determined by the subsystem density. Additionally, with decreasing T at a fixed ρ, the length scale diverges in the same manner as ξ∼(T-T_{c})^{-2/d}, for which ρ is identical to ρ_{c} at T=T_{c}. The exponent describing the diverging length scale is the same as the one predicted by some theoretical models and indeed has been observed in some simulations and experiments. However, the basic mechanism for this divergence is different; that is, we do not invoke thermodynamic anomalies associated with the thermodynamic phase transition as the origin of the growing length scale. We further present arguements for the cooperative properties of the structural relaxation based on the clusters.
Collapse
Affiliation(s)
- Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
13
|
Chakrabarty S, Tah I, Karmakar S, Dasgupta C. Block Analysis for the Calculation of Dynamic and Static Length Scales in Glass-Forming Liquids. PHYSICAL REVIEW LETTERS 2017; 119:205502. [PMID: 29219342 DOI: 10.1103/physrevlett.119.205502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 05/17/2023]
Abstract
We present block analysis, an efficient method of performing finite-size scaling for obtaining the length scale of dynamic heterogeneity and the point-to-set length scale for generic glass-forming liquids. This method involves considering blocks of varying sizes embedded in a system of a fixed (large) size. The length scale associated with dynamic heterogeneity is obtained from a finite-size scaling analysis of the dependence of the four-point dynamic susceptibility on the block size. The block size dependence of the variance of the α relaxation time yields the static point-to-set length scale. The values of the obtained length scales agree quantitatively with those obtained from other conventional methods. This method provides an efficient experimental tool for studying the growth of length scales in systems such as colloidal glasses for which performing finite-size scaling by carrying out experiments for varying system sizes may not be feasible.
Collapse
Affiliation(s)
- Saurish Chakrabarty
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Shivakote, Hesaraghatta, Hubli, Bangalore, 560089, India
| | - Indrajit Tah
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narisingi, Hyderabad 500075, India
| | - Smarajit Karmakar
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narisingi, Hyderabad 500075, India
| | - Chandan Dasgupta
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
14
|
Hu YC, Guan PF, Wang Q, Yang Y, Bai HY, Wang WH. Pressure effects on structure and dynamics of metallic glass-forming liquid. J Chem Phys 2017; 146:024507. [DOI: 10.1063/1.4973919] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Yuan-Chao Hu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Peng-Fei Guan
- Beijing Computational Science Research Center, Beijing 100094, China
| | - Qing Wang
- Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
- Laboratory for Microstructures, Institute of Materials Science, Shanghai University, Shanghai 200072, China
| | - Yong Yang
- Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hai-Yang Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei-Hua Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
15
|
Peng HL, Voigtmann T. Decoupled length scales for diffusivity and viscosity in glass-forming liquids. Phys Rev E 2016; 94:042612. [PMID: 27841604 DOI: 10.1103/physreve.94.042612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 06/06/2023]
Abstract
The growth of the characteristic length scales both for diffusion and viscosity is investigated by molecular dynamics utilizing the finite-size effect in a binary Lennard-Jones mixture. For those quantities relevant to the diffusion process (e.g., the hydrodynamic value and the spatial correlation function), a strong system-size dependence is found. In contrast, it is weak or absent for the shear relaxation process. Correlation lengths are estimated from the decay of the spatial correlation functions. We find the length scale for viscosity decouples from the one of diffusivity, featured by a saturated length even in high supercooling. This temperature-independent behavior of the length scale is reminiscent of the unapparent structure change upon supercooling, implying the manifestation of configuration entropy. Whereas for the diffusion process, it is manifested by relaxation dynamics and dynamic heterogeneity. The Stokes-Einstein relation is found to break down at the temperature where the decoupling of these lengths happens.
Collapse
Affiliation(s)
- H L Peng
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Th Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
- Department of Physics, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Avila KE, Castillo HE, Vollmayr-Lee K, Zippelius A. Slow and long-ranged dynamical heterogeneities in dissipative fluids. SOFT MATTER 2016; 12:5461-5474. [PMID: 27230572 DOI: 10.1039/c6sm00784h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, Nc, and their radius of gyration, RG. We show that , providing direct evidence that the most immobile particles arrange in fractal objects with a fractal dimension, df, that is observed to increase with packing fraction ϕ. The cluster size distribution obeys scaling, approaching an algebraic decay in the limit of structural arrest, i.e., ϕ→ϕc. Alternatively, dynamical heterogeneities are analyzed via the four-point structure factor S4(q,t) and the dynamical susceptibility χ4(t). S4(q,t) is shown to obey scaling in the full range of packing fractions, 0.6 ≤ϕ≤ 0.805, and to become increasingly long-ranged as ϕ→ϕc. Finite size scaling of χ4(t) provides a consistency check for the previously analyzed divergences of χ4(t) ∝ (ϕ-ϕc)(-γχ) and the correlation length ξ∝ (ϕ-ϕc)(-γξ). We check the robustness of our results with respect to our definition of mobility. The divergences and the scaling for ϕ→ϕc suggest a non-equilibrium glass transition which seems qualitatively independent of the coefficient of restitution.
Collapse
Affiliation(s)
- Karina E Avila
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
17
|
Karmakar S, Dasgupta C, Sastry S. Short-Time Beta Relaxation in Glass-Forming Liquids Is Cooperative in Nature. PHYSICAL REVIEW LETTERS 2016; 116:085701. [PMID: 26967425 DOI: 10.1103/physrevlett.116.085701] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 05/17/2023]
Abstract
Temporal relaxation of density fluctuations in supercooled liquids near the glass transition occurs in multiple steps. Using molecular dynamics simulations for three model glass-forming liquids, we show that the short-time β relaxation is cooperative in nature. Using finite-size scaling analysis, we extract a growing length scale associated with beta relaxation from the observed dependence of the beta relaxation time on the system size. We find, in qualitative agreement with the prediction of the inhomogeneous mode coupling theory, that the temperature dependence of this length scale is the same as that of the length scale that describes the spatial heterogeneity of local dynamics in the long-time α-relaxation regime.
Collapse
Affiliation(s)
- Smarajit Karmakar
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India
| | - Chandan Dasgupta
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Srikanth Sastry
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
18
|
Karmakar S, Dasgupta C, Sastry S. Length scales in glass-forming liquids and related systems: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:016601. [PMID: 26684508 DOI: 10.1088/0034-4885/79/1/016601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed.
Collapse
Affiliation(s)
- Smarajit Karmakar
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India
| | | | | |
Collapse
|
19
|
Buchenau U, Zorn R, Ramos MA. Probing cooperative liquid dynamics with the mean square displacement. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042312. [PMID: 25375499 DOI: 10.1103/physreve.90.042312] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 06/04/2023]
Abstract
Literature data for picosecond mean square displacements show that the anharmonicity explains only about half of the fragility (with different fractions for different glass formers). The other half must be ascribed to the Adam-Gibbs mechanism of a growing cooperatively rearranging region. One can measure both influences separately by a simultaneous measurement of liquid and crystal in the coexistence region.
Collapse
Affiliation(s)
- U Buchenau
- Jülich Center for Neutron Science, Forschungszentrum Jülich Postfach 1913, D-52425 Jülich, Federal Republic of Germany
| | - R Zorn
- Jülich Center for Neutron Science, Forschungszentrum Jülich Postfach 1913, D-52425 Jülich, Federal Republic of Germany
| | - M A Ramos
- Laboratorio de Bajas Temperaturas, Departamento de Fisica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolas Cabrera, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
20
|
Avila KE, Castillo HE, Fiege A, Vollmayr-Lee K, Zippelius A. Strong dynamical heterogeneity and universal scaling in driven granular fluids. PHYSICAL REVIEW LETTERS 2014; 113:025701. [PMID: 25062209 DOI: 10.1103/physrevlett.113.025701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 06/03/2023]
Abstract
Large-scale simulations of two-dimensional bidisperse granular fluids allow us to determine spatial correlations of slow particles via the four-point structure factor S(4)(q,t). Both cases, elastic (ϵ=1) and inelastic (ϵ<1) collisions, are studied. As the fluid approaches structural arrest, i.e., for packing fractions in the range 0.6≤ϕ≤0.805, scaling is shown to hold: S(4)(q,t)/χ(4)(t)=s(qξ(t)). Both the dynamic susceptibility χ(4)(τ(α)) and the dynamic correlation length ξ(τ(α)) evaluated at the α relaxation time τ(α) can be fitted to a power law divergence at a critical packing fraction. The measured ξ(τ(α)) widely exceeds the largest one previously observed for three-dimensional (3d) hard sphere fluids. The number of particles in a slow cluster and the correlation length are related by a robust power law, χ(4)(τ(α))≈ξ(d-p)(τ(α)), with an exponent d-p≈1.6. This scaling is remarkably independent of ϵ, even though the strength of the dynamical heterogeneity at constant volume fraction depends strongly on ϵ.
Collapse
Affiliation(s)
- Karina E Avila
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA and Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 17, D-37077 Göttingen, Germany
| | - Horacio E Castillo
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
| | - Andrea Fiege
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Katharina Vollmayr-Lee
- Department of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, USA
| | - Annette Zippelius
- Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 17, D-37077 Göttingen, Germany and Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| |
Collapse
|
21
|
Sen Gupta B, Das SP. Nonequilibrium dynamics of four-point correlations of collective density fluctuations in a supercooled liquid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012137. [PMID: 25122281 DOI: 10.1103/physreve.90.012137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Indexed: 06/03/2023]
Abstract
In this paper we study the four-point correlation function χ(4) of collective density fluctuations in a nonequilibrium liquid. The equilibration is controlled by a modified stretched exponential behavior (exp[-(t(w)/τ)(β)]) having the relaxation time τ dependent on the aging time t(w). Similar aging behavior has been seen experimentally in supercooled liquids. The basic equations of fluctuating nonlinear hydrodynamics are solved here numerically to obtain χ(4) for equilibrium and non equilibrium states. We also identify a dynamic length scale ξ from the equilibrated function. ξ(T) grows with fall of temperature T. From a broader perspective, we demonstrate here that the characteristic signatures of dynamical heterogeneities in a supercooled liquid, observed previously in computer simulations of the dynamics of a small number of particles, are also present in the coarse grained equations of generalized hydrodynamics.
Collapse
Affiliation(s)
- Bhaskar Sen Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shankar P Das
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
22
|
Sengupta S, Karmakar S. Distribution of diffusion constants and Stokes-Einstein violation in supercooled liquids. J Chem Phys 2014; 140:224505. [DOI: 10.1063/1.4882066] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Annamareddy VA, Nandi PK, Mei X, Eapen J. Waxing and waning of dynamical heterogeneity in the superionic state. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:010301. [PMID: 24580154 DOI: 10.1103/physreve.89.010301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 05/27/2023]
Abstract
Using molecular dynamics simulations of UO2-a type II superionic conductor-we identify a well-defined onset of dynamic disorder (Tα), which is remarkably correlated to a nontrivial advance of dynamical heterogeneity (DH). Quantified by the correlations in the dynamic propensity and van Hove self-correlation function, the DH is shown to grow with increasing temperature from Tα, peak at an intermediate temperature between Tα and Tλ-the superionic transition temperature-and then recede. Surprisingly, the DH attributes are not uniform across the temperatures-our investigation shows a low temperature (αT) stage DH, which is characterized by weak correlations and a plateaulike period in the correlations of the propensity, and a high temperature (λT) stage DH with strong correlations that are analogous to those in typical supercooled liquids. Our work, which has rigorously identified the onset of superionicity, gives a different direction for interpreting scattering experiments on the basis of statistical, correlated dynamics.
Collapse
Affiliation(s)
- V Ajay Annamareddy
- Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Prithwish K Nandi
- Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Xiaojun Mei
- Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jacob Eapen
- Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
24
|
Kim K, Saito S, Miyazaki K, Biroli G, Reichman DR. Dynamic length scales in glass-forming liquids: an inhomogeneous molecular dynamics simulation approach. J Phys Chem B 2013; 117:13259-67. [PMID: 23883366 DOI: 10.1021/jp4035419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we numerically investigate a new method for the characterization of growing length scales associated with spatially heterogeneous dynamics of glass-forming liquids. This approach, motivated by the formulation of the inhomogeneous mode-coupling theory (IMCT) [Biroli, G.; et al. Phys. Rev. Lett. 2006 97, 195701], utilizes inhomogeneous molecular dynamics simulations in which the system is perturbed by a spatially modulated external potential. We show that the response of the two-point correlation function to the external field allows one to probe dynamic correlations. We examine the critical properties shown by this function, in particular, the associated dynamic correlation length, that is found to be comparable to the one extracted from standardly employed four-point correlation functions. Our numerical results are in qualitative agreement with IMCT predictions but suggest that one has to take into account fluctuations not included in this mean-field approach to reach quantitative agreement. Advantages of our approach over the more conventional one based on four-point correlation functions are discussed.
Collapse
Affiliation(s)
- Kang Kim
- Institute for Molecular Science , Okazaki, Aichi 444-8585, Japan
| | | | | | | | | |
Collapse
|
25
|
Biroli G, Karmakar S, Procaccia I. Comparison of static length scales characterizing the glass transition. PHYSICAL REVIEW LETTERS 2013; 111:165701. [PMID: 24182280 DOI: 10.1103/physrevlett.111.165701] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Indexed: 06/02/2023]
Abstract
The dramatic dynamic slowing down associated with the glass transition is considered by many to be related to the existence of a static length scale that grows when temperature decreases. Defining, identifying, and measuring such a length is a subtle problem. Recently, two proposals, based on very different insights regarding the relevant physics, were put forward. One approach is based on the point-to-set correlation technique and the other on the scale where the lowest eigenvalue of the Hessian matrix becomes sensitive to disorder. Here we present numerical evidence that the two approaches might result in the same identical length scale. This provides mutual support for their relevance and, at the same time, raises interesting theoretical questions, discussed in the conclusion.
Collapse
Affiliation(s)
- Giulio Biroli
- IPhT, CEA/DSM-CNRS/URA 2306, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
26
|
Starr FW, Douglas JF, Sastry S. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation. J Chem Phys 2013; 138:12A541. [PMID: 23556792 DOI: 10.1063/1.4790138] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We carefully examine common measures of dynamical heterogeneity for a model polymer melt and test how these scales compare with those hypothesized by the Adam and Gibbs (AG) and random first-order transition (RFOT) theories of relaxation in glass-forming liquids. To this end, we first analyze clusters of highly mobile particles, the string-like collective motion of these mobile particles, and clusters of relative low mobility. We show that the time scale of the high-mobility clusters and strings is associated with a diffusive time scale, while the low-mobility particles' time scale relates to a structural relaxation time. The difference of the characteristic times for the high- and low-mobility particles naturally explains the well-known decoupling of diffusion and structural relaxation time scales. Despite the inherent difference of dynamics between high- and low-mobility particles, we find a high degree of similarity in the geometrical structure of these particle clusters. In particular, we show that the fractal dimensions of these clusters are consistent with those of swollen branched polymers or branched polymers with screened excluded-volume interactions, corresponding to lattice animals and percolation clusters, respectively. In contrast, the fractal dimension of the strings crosses over from that of self-avoiding walks for small strings, to simple random walks for longer, more strongly interacting, strings, corresponding to flexible polymers with screened excluded-volume interactions. We examine the appropriateness of identifying the size scales of either mobile particle clusters or strings with the size of cooperatively rearranging regions (CRR) in the AG and RFOT theories. We find that the string size appears to be the most consistent measure of CRR for both the AG and RFOT models. Identifying strings or clusters with the "mosaic" length of the RFOT model relaxes the conventional assumption that the "entropic droplets" are compact. We also confirm the validity of the entropy formulation of the AG theory, constraining the exponent values of the RFOT theory. This constraint, together with the analysis of size scales, enables us to estimate the characteristic exponents of RFOT.
Collapse
Affiliation(s)
- Francis W Starr
- Physics Department, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | |
Collapse
|
27
|
Flenner E, Szamel G. Dynamic heterogeneities above and below the mode-coupling temperature: Evidence of a dynamic crossover. J Chem Phys 2013; 138:12A523. [DOI: 10.1063/1.4773321] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Kim K, Saito S. Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: A systematic analysis of multi-point and multi-time correlations. J Chem Phys 2013; 138:12A506. [DOI: 10.1063/1.4769256] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
29
|
Karmakar S, Procaccia I. Finite-size scaling for the glass transition: the role of a static length scale. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061502. [PMID: 23367953 DOI: 10.1103/physreve.86.061502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Indexed: 06/01/2023]
Abstract
Over the past decade, computer simulations have had an increasing role in shedding light on difficult statistical physical phenomena, and in particular on the ubiquitous problem of the glass transition. Here in a wide variety of materials the viscosity of a supercooled liquid increases by many orders of magnitude upon decreasing the temperature over a modest range. A natural concern in these computer simulations is the very small size of the simulated systems compared to experimental ones, raising the issue of how to assess the thermodynamic limit. Here we turn this limitation to our advantage by performing finite size scaling on the system size dependence of the relaxation time for supercooled liquids to emphasize the importance of a growing static length scale in the theory of glass transition. We demonstrate that the static length scale that was discovered by us in Physica A 391, 1001 (2012) fits the bill extremely well, allowing us to provide a finite-size scaling theory for the α-relaxation time of the glass transition, including predictions for the thermodynamic limit based on simulations in small systems.
Collapse
Affiliation(s)
- Smarajit Karmakar
- Departimento di Fisica, Universitá di Roma La Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | | |
Collapse
|
30
|
Shiba H, Kawasaki T, Onuki A. Relationship between bond-breakage correlations and four-point correlations in heterogeneous glassy dynamics: configuration changes and vibration modes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041504. [PMID: 23214588 DOI: 10.1103/physreve.86.041504] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Indexed: 06/01/2023]
Abstract
We investigate the dynamic heterogeneities of glassy particle systems in the theoretical schemes of bond breakage and four-point correlation functions. In the bond-breakage scheme, we introduce the structure factor S(b)(q,t) and the susceptibility χ(b)(t) to detect the spatial correlations of configuration changes. Here χ(b)(t) attains a maximum at t=t(b)(max) as a function of time t, where the fraction of the particles with broken bonds φ(b)(t) is about 1/2. In the four-point scheme, treating the structure factor S(4)(q,t) and the susceptibility χ(4)(t), we detect superpositions of the heterogeneity of bond breakage and that of thermal low-frequency vibration modes. While the former grows slowly, the latter emerges quickly to exhibit complex space-time behavior. In two dimensions, the vibration modes extending over the system yield significant contributions to the four-point correlations, which depend on the system size logarithmically. A maximum of χ(4)(t) is attained at t=t(4)(max), where these two contributions become of the same order. As a result, t(4)(max) is considerably shorter than t(b)(max).
Collapse
Affiliation(s)
- Hayato Shiba
- Institute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan
| | | | | |
Collapse
|
31
|
Xu WS, Sun ZY, An LJ. Effect of attractions on correlation length scales in a glass-forming liquid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041506. [PMID: 23214590 DOI: 10.1103/physreve.86.041506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Indexed: 06/01/2023]
Abstract
There is growing evidence that slow dynamics and dynamic heterogeneity possess structural signatures in glass-forming liquids. However, even in the weakly frustrated glass-forming liquids, whether or not the dynamic heterogeneity has a structural origin is a matter of debate. Via molecular dynamics simulation, we present a study of examining the connection between dynamic heterogeneity and bond orientational order in a weakly frustrated glass-forming liquid in two dimensions by taking advantage of assessing the effect of attractions on the correlation length scales. We find that attractions can strongly affect relaxation dynamics, dynamic heterogeneity, and the associated dynamic correlation length of the liquid, but their influence on bond orientational order and the associated static correlation length shows a manner reminiscent of the effect of attractions on the thermodynamics of liquids. This implies that the growth of bond orientational order and static correlation length scale might be merely a manifestation of favoring the configurational entropy in weakly frustrated glass-forming liquids. Thus, our results provide strong evidence that bond orientational order cannot provide a complete description of dynamic heterogeneity even in weakly frustrated glass-forming systems.
Collapse
Affiliation(s)
- Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | | | | |
Collapse
|
32
|
Berthier L, Biroli G, Coslovich D, Kob W, Toninelli C. Finite-size effects in the dynamics of glass-forming liquids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031502. [PMID: 23030918 DOI: 10.1103/physreve.86.031502] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Indexed: 06/01/2023]
Abstract
We present a comprehensive theoretical study of finite-size effects in the relaxation dynamics of glass-forming liquids. Our analysis is motivated by recent theoretical progress regarding the understanding of relevant correlation length scales in liquids approaching the glass transition. We obtain predictions both from general theoretical arguments and from a variety of specific perspectives: mode-coupling theory, kinetically constrained and defect models, and random first-order transition theory. In the last approach, we predict in particular a nonmonotonic evolution of finite-size effects across the mode-coupling crossover due to the competition between mode-coupling and activated relaxation. We study the role of competing relaxation mechanisms in giving rise to nonmonotonic finite-size effects by devising a kinetically constrained model where the proximity to the mode-coupling singularity can be continuously tuned by changing the lattice topology. We use our theoretical findings to interpret the results of extensive molecular dynamics studies of four model liquids with distinct structures and kinetic fragilities. While the less fragile model only displays modest finite-size effects, we find a more significant size dependence evolving with temperature for more fragile models, such as Lennard-Jones particles and soft spheres. Finally, for a binary mixture of harmonic spheres we observe the predicted nonmonotonic temperature evolution of finite-size effects near the fitted mode-coupling singularity, suggesting that the crossover from mode-coupling to activated dynamics is more pronounced for this model. Finally, we discuss the close connection between our results and the recent report of a nonmonotonic temperature evolution of a dynamic length scale near the mode-coupling crossover in harmonic spheres.
Collapse
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, Montpellier, France
| | | | | | | | | |
Collapse
|
33
|
Sengupta S, Karmakar S, Dasgupta C, Sastry S. Adam-Gibbs relation for glass-forming liquids in two, three, and four dimensions. PHYSICAL REVIEW LETTERS 2012; 109:095705. [PMID: 23002857 DOI: 10.1103/physrevlett.109.095705] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Indexed: 05/23/2023]
Abstract
The Adam-Gibbs relation between relaxation times and the configurational entropy has been tested extensively for glass formers using experimental data and computer simulation results. Although the form of the relation contains no dependence on the spatial dimensionality in the original formulation, subsequent derivations of the Adam-Gibbs relation allow for such a possibility. We test the Adam-Gibbs relation in two, three, and four spatial dimensions using computer simulations of model glass formers. We find that the relation is valid in three and four dimensions. But in two dimensions, the relation does not hold, and interestingly, no single alternate relation describes the results for the different model systems we study.
Collapse
Affiliation(s)
- Shiladitya Sengupta
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bangalore 560 064, India
| | | | | | | |
Collapse
|
34
|
Mizuno H, Yamamoto R. Dynamical heterogeneity in a highly supercooled liquid under a sheared situation. J Chem Phys 2012; 136:084505. [DOI: 10.1063/1.3688227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
35
|
Mizuno H, Yamamoto R. Dynamical heterogeneity in a highly supercooled liquid: consistent calculations of correlation length, intensity, and lifetime. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:011506. [PMID: 21867177 DOI: 10.1103/physreve.84.011506] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 05/16/2011] [Indexed: 05/31/2023]
Abstract
We have investigated dynamical heterogeneity in a highly supercooled liquid using molecular-dynamics simulations in three dimensions. Dynamical heterogeneity can be characterized by three quantities: correlation length ξ(4), intensity χ(4), and lifetime τ(hetero). We evaluated all three quantities consistently from a single order parameter. In a previous study [H. Mizuno and R. Yamamoto, Phys. Rev. E 82, 030501(R) (2010)], we examined the lifetime τ(hetero)(t) in two time intervals t = τ(α) and τ(ngp), where τ(α) is the α-relaxation time and τ(ngp) is the time at which the non-Gaussian parameter of the Van Hove self-correlation function is maximized. In the present study, in addition to the lifetime τ(hetero)(t), we evaluated the correlation length ξ(4)(t) and the intensity χ({4)(t) from the same order parameter used for the lifetime τ(hetero)(t). We found that as the temperature decreases, the lifetime τ(hetero)(t) grows dramatically, whereas the correlation length ξ(4)(t) and the intensity χ(4)(t) increase slowly compared to τ(hetero)(t) or plateaus. Furthermore, we investigated the lifetime τ(hetero)(t) in more detail. We examined the time-interval dependence of the lifetime τ(hetero)(t) and found that as the time interval t increases, τ(hetero)(t) monotonically becomes longer and plateaus at the relaxation time of the two-point density correlation function. At the large time intervals for which τ(hetero)(t) plateaus, the heterogeneous dynamics migrate in space with a diffusion mechanism, such as the particle density.
Collapse
Affiliation(s)
- Hideyuki Mizuno
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | | |
Collapse
|
36
|
Razul MSG, Matharoo GS, Poole PH. Spatial correlation of the dynamic propensity of a glass-forming liquid. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:235103. [PMID: 21613718 DOI: 10.1088/0953-8984/23/23/235103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present computer simulation results on the dynamic propensity (as defined by Widmer-Cooper et al 2004 Phys. Rev. Lett. 93 135701) in a Kob-Andersen binary Lennard-Jones liquid system consisting of 8788 particles. We compute the spatial correlation function for the dynamic propensity as a function of both the reduced temperature T, and the time scale on which the particle displacements are measured. For T ≤ 0.6, we find that non-zero correlations occur at the largest length scale accessible in our system. We also show that a cluster-size analysis of particles with extremal values of the dynamic propensity, as well as 3D visualizations, reveal spatially correlated regions that approach the size of our system as T decreases, consistently with the behavior of the spatial correlation function. Next, we define and examine the 'coordination propensity', the isoconfigurational average of the coordination number of the minority B particles around the majority A particles. We show that a significant correlation exists between the spatial fluctuations of the dynamic and coordination propensities. In addition, we find non-zero correlations of the coordination propensity occurring at the largest length scale accessible in our system for all T in the range 0.466 < T < 1.0. We discuss the implications of these results for understanding the length scales of dynamical heterogeneity in glass-forming liquids.
Collapse
Affiliation(s)
- M Shajahan G Razul
- Department of Physics, St Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | | | | |
Collapse
|
37
|
Abstract
The asymmetry model for the highly viscous flow postulates thermally activated jumps from a practically undistorted ground state to strongly distorted, but stable structures, with a pronounced Eshelby backstress from the distorted surroundings. The viscosity is ascribed to those stable distorted structures which do not jump back, but relax by the relaxation of the surrounding viscoelastic matrix. It is shown that this mechanism implies a description in terms of the shear compliance, with a viscosity which can be calculated from the cutoff of the retardation spectrum. Consistency requires that this cutoff lies close to the Maxwell time. The improved asymmetry model compares well with experiment.
Collapse
Affiliation(s)
- U Buchenau
- Institut für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, D-52425 Jülich, Federal Republic of Germany.
| |
Collapse
|
38
|
|
39
|
Flenner E, Zhang M, Szamel G. Analysis of a growing dynamic length scale in a glass-forming binary hard-sphere mixture. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:051501. [PMID: 21728534 DOI: 10.1103/physreve.83.051501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Indexed: 05/31/2023]
Abstract
We examine a length scale that characterizes the spatial extent of heterogeneous dynamics in a glass-forming binary hard-sphere mixture up to the mode-coupling volume fraction ϕ(c). First, we characterize the system's dynamics. Then, we utilize a method [Phys. Rev. Lett. 105, 217801 (2010)] to extract and analyze the ensemble-independent dynamic susceptibility χ(4)(t) and the dynamic correlation length ξ(t) for a range of times between the β and α relaxation times. We find that in this time range the dynamic correlation length follows a volume fraction-independent master curve ξ(t)~ln(t). For longer times, ξ(t) departs from this master curve and remains constant up to the largest time at which we can determine the length accurately. In addition to the previously established correlation τ(α)~exp[ξ(τ(α))] between the α relaxation time, τ(α), and the dynamic correlation length at this time, ξ(τ(α)), we also find a similar correlation for the diffusion coefficient D~exp[ξ(τ(α))(θ)] with θ≈0.6. We discuss the relevance of these findings for different theories of the glass transition.
Collapse
Affiliation(s)
- Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|
40
|
Flenner E, Szamel G. Dynamic heterogeneity in a glass forming fluid: susceptibility, structure factor, and correlation length. PHYSICAL REVIEW LETTERS 2010; 105:217801. [PMID: 21231355 DOI: 10.1103/physrevlett.105.217801] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Indexed: 05/23/2023]
Abstract
We investigate the growth of dynamic heterogeneity in a glassy hard-sphere mixture for volume fractions up to and including the mode-coupling transition. We use an 80,000 particle system to test a new procedure to evaluate a dynamic correlation length ξ(t): we determine the ensemble independent dynamic susceptibility χ(4)(t) and use it to facilitate evaluation of ξ(t) from the small wave vector behavior of the four-point structure factor. We analyze relations between the α relaxation time τ(α), χ(4)(τ(α)), and ξ(τ(α)). We find that mode-coupling-like power laws provide a reasonable description of the data over a restricted range of volume fractions, but the power laws' exponents differ from those predicted by the inhomogeneous mode-coupling theory. We find ξ(τ(α))~ln(τ(α)) over the full range of volume fractions studied, which is consistent with an Adam-Gibbs-type relation.
Collapse
Affiliation(s)
- Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|