1
|
Bouzid O, Martínez-Fernández D, Herranz M, Karayiannis NC. Entropy-Driven Crystallization of Hard Colloidal Mixtures of Polymers and Monomers. Polymers (Basel) 2024; 16:2311. [PMID: 39204531 PMCID: PMC11359749 DOI: 10.3390/polym16162311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The most trivial example of self-assembly is the entropy-driven crystallization of hard spheres. Past works have established the similarities and differences in the phase behavior of monomers and chains made of hard spheres. Inspired by the difference in the melting points of the pure components, we study, through Monte Carlo simulations, the phase behavior of athermal mixtures composed of fully flexible polymers and individual monomers of uniform size. We analyze how the relative number fraction and the packing density affect crystallization and the established ordered morphologies. As a first result, a more precise determination of the melting point for freely jointed chains of tangent hard spheres is extracted. A synergetic effect is observed in the crystallization leading to synchronous crystallization of the two species. Structural analysis of the resulting ordered morphologies shows perfect mixing and thus no phase separation. Due to the constraints imposed by chain connectivity, the local environment of the individual spheres, as quantified by the Voronoi polyhedron, is systematically more spherical and more symmetric compared to that of spheres belonging to chains. In turn, the local environment of the ordered phase is more symmetric and more spherical compared to that of the initial random packing, demonstrating the entropic origins of the phase transition. In general, increasing the polymer content reduces the degree of crystallinity and increases the melting point to higher volume fractions. According to the present findings, relative concentration is another determining factor in controlling the phase behavior of hard colloidal mixtures based on polymers.
Collapse
Affiliation(s)
- Olia Bouzid
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Daniel Martínez-Fernández
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
2
|
Hoy RS. Homogeneous crystallization in four-dimensional Lennard-Jones liquids. Phys Rev E 2024; 109:044604. [PMID: 38755930 DOI: 10.1103/physreve.109.044604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024]
Abstract
We observe homogeneous crystallization in simulated high-dimensional (d>3) liquids that follow physically realistic dynamics and have system sizes that are large enough to eliminate the possibility that crystallization was induced by the periodic boundary conditions. Supercooled four-dimensional (4D) Lennard-Jones (LJ) liquids maintained at zero pressure and constant temperatures 0.59
Collapse
Affiliation(s)
- Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
3
|
Li L, Wang X, Yan Y, Francisco JS, Zhang J, Zeng XC, Zhong J. Resolving Temperature-Dependent Hydrate Nucleation Pathway: The Role of "Transition Layer". J Am Chem Soc 2023; 145:24166-24174. [PMID: 37874937 DOI: 10.1021/jacs.3c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Understanding the nucleation of natural gas hydrate (NGH) at different conditions has important implications to NGH recovery and other industrial applications, such as gas storage and separation. Herein, vast numbers of hydrate nucleation events are traced via molecular dynamics (MD) simulations at different degrees of supercooling (or driving forces). Specifically, to precisely characterize a hydrate nucleus from an aqueous system during the MD simulation, we develop an evolutionary order parameter (OP) to recognize the nucleus size and shape. Subsequently, the free energy landscapes of hydrate during nucleation are explored by using the newly developed OP. The results suggest that at 270 K (or 0.92 Tm supercooling, where Tm is the melting point), the near-rounded nucleus prevails during the nucleation, as described from the classical nucleation theory. In contrast, at relatively strong driving forces of 0.85 and 0.88 Tm, nonclassical nucleation events arise. Specifically, the pathway toward an elongated nucleus becomes as important as the pathway toward a near-rounded nucleus. To explain the distinct nucleation phenomena at different supercoolings, a notion of a "transition layer" (or liquid-blob-like layer) is proposed. Here, the transition layer is to describe the interfacial region between the nucleus and aqueous solution, and this layer entails two functionalities: (1) it tends to retain CH4 depending on the degrees of supercooling and (2) it facilitates collision among CH4, which thus promote the incorporation of CH4 into nucleus. Our simulation indicates that compared to the near-rounded nucleus, the transition layer surrounding the elongated nucleus is more evident with the higher collision rate among CH4 molecules. As such, the transition layer tends to promote the elongated nucleus pathway, while offsetting the cost of larger surface free energy associated with the elongated nucleus. At 0.92 Tm, however, the transition layer gradually disappears, and classical nucleation events dominate. Overall, the notion of "transition layer" offers deeper insight into the NGH nucleation at different degrees of supercooling and could be extended to describe other types of hydrate nucleation.
Collapse
Affiliation(s)
- Liwen Li
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xiao Wang
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Youguo Yan
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Jun Zhang
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong 999077, China
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jie Zhong
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
4
|
Ruzzi V, Baglioni J, Piazza R. Optothermal crystallization of hard spheres in an effective bidimensional geometry. J Chem Phys 2023; 159:154904. [PMID: 37850694 DOI: 10.1063/5.0169221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023] Open
Abstract
Using colloids effectively confined in two dimensions by a cell with a thickness comparable to the particle size, we investigate the nucleation and growth of crystallites induced by locally heating the solvent with a near-infrared laser beam. The particles, which are "thermophilic," move towards the laser spot solely because of thermophoresis with no convection effects, forming dense clusters whose structure is monitored using two order parameters that gauge the local density and the orientational ordering. We find that ordering takes place when the cluster reaches an average surface density that is still below the upper equilibrium limit for the fluid phase of hard disks, meaning that we do not detect any sign of a proper "two-stage" nucleation from a glass or a polymorphic crystal structure. The crystal obtained at late growth stage displays a remarkable uniformity with a negligible amount of defects, arguably because the incoming particles diffuse, bounce, and displace other particles before settling at the crystal interface. This "fluidization" of the outer crystal edge may resemble the surface enhanced mobility giving rise to ultra-stable glasses by physical vapor deposition.
Collapse
Affiliation(s)
- Vincenzo Ruzzi
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC) "Giulio Natta," Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Jacopo Baglioni
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC) "Giulio Natta," Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC) "Giulio Natta," Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
5
|
de Jager M, Smallenburg F, Filion L. In search of a precursor for crystal nucleation of hard and charged colloids. J Chem Phys 2023; 159:134902. [PMID: 37787142 DOI: 10.1063/5.0161356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
The interplay between crystal nucleation and the structure of the metastable fluid has been a topic of significant debate over recent years. In particular, it has been suggested that even in simple model systems such as hard or charged colloids, crystal nucleation might be foreshadowed by significant fluctuations in local structure around the location where the nucleus first arises. We investigate this using computer simulations of spontaneous nucleation events in both hard and charged colloidal systems. To detect local structural variations, we use both standard and unsupervised machine learning methods capable of finding hidden structures in the metastable fluid phase. We track numerous nucleation events for the face-centered cubic and body-centered cubic crystals on a local level and demonstrate that all signs of crystallinity emerge simultaneously from the very start of the nucleation process. We thus conclude that we observe no precursor for the crystal nucleation of hard and charged colloids.
Collapse
Affiliation(s)
- Marjolein de Jager
- Soft Condensed Matter, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Frank Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Laura Filion
- Soft Condensed Matter, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Zhang Q, Li J, Wang Z, Wang J. Controlling polymorph selection during nucleation by tuning the structure of metallic melts. Phys Chem Chem Phys 2023; 25:25480-25491. [PMID: 37712292 DOI: 10.1039/d3cp02837b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Controlling the polymorphism of crystals is crucial to the design of novel metallic materials with specific properties; however, the atomistic mechanism underlying polymorph selection during crystallization remains unclear. In this work, molecular dynamics simulations combined with well-tempered metadynamics simulations are employed to explore the atomic mechanisms of polymorph selection during the nucleation process of FCC aluminum and copper. Simulation results suggest that the distinct nucleation pathways of both FCC metals originate from different free-energy surfaces of nucleation processes and diverse symmetries of nucleation precursors. The initially forming phase from undercooled melts is most likely to be the one that has the symmetry closest to the precursors. Besides, tiny seeds with diverse crystal symmetries could induce the formation of preordered precursors for nucleation around the seed, leading to the reduction of free-energy barrier and thus the promotion of nucleation. Controlling polymorph selection with tiny seeds is realized by tuning the symmetry of precursors. Our findings not only shed significant light on understanding polymorph selection, but also provide theoretical guidance for better controlling the nucleation pathway in practice.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Junjie Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Zhijun Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Jincheng Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| |
Collapse
|
7
|
Rogal J, Díaz Leines G. Controlling crystallization: what liquid structure and dynamics reveal about crystal nucleation mechanisms. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220249. [PMID: 37211029 DOI: 10.1098/rsta.2022.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/06/2022] [Indexed: 05/23/2023]
Abstract
Over recent years, molecular simulations have provided invaluable insights into the microscopic processes governing the initial stages of crystal nucleation and growth. A key aspect that has been observed in many different systems is the formation of precursors in the supercooled liquid that precedes the emergence of crystalline nuclei. The structural and dynamical properties of these precursors determine to a large extent the nucleation probability as well as the formation of specific polymorphs. This novel microscopic view on nucleation mechanisms has further implications for our understanding of the nucleating ability and polymorph selectivity of nucleating agents, as these appear to be strongly linked to their ability in modifying structural and dynamical characteristics of the supercooled liquid, namely liquid heterogeneity. In this perspective, we highlight recent progress in exploring the connection between liquid heterogeneity and crystallization, including the effects of templates, and the potential impact for controlling crystallization processes. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- Jutta Rogal
- Department of Chemistry, New York University, New York, NY 10003, USA
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Grisell Díaz Leines
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
8
|
Zhan M, Chen Y, Jiang Z, Xu N, Tan P. Multiple Scenarios of Low-Temperature Nucleation in Simple Liquids. PHYSICAL REVIEW LETTERS 2023; 130:178201. [PMID: 37172229 DOI: 10.1103/physrevlett.130.178201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/04/2023] [Indexed: 05/14/2023]
Abstract
Usually, sufficient supercooling of a liquid is employed to bypass the free energy barrier and speed up crystallization. However, lowering the temperature T induces new issues competing with the crystallization, e.g., slow particle motion, geometric frustration, and the glass formation, which complicates our understanding of crystal growth. Here we systematically study the low-temperature nucleation kinetics discriminated by the maximum nucleation rate temperature T_{d} and the glass transition temperature T_{g}. At T_{d}, the ratio of the precursor and geometrically frustrated particles reaches the maximum. When T_{g}<T<T_{d}, nucleation kinetics is characterized by the subdiffusive slow particle motion, the high degrees of geometric frustration, and the saturation of precursors. In this regime, nucleation can proceed through the diffusionless-like ordering of precursors. Near T_{g}, there is a crossover regime, where geometrically frustrated particles percolate and the glass formation strongly slows down the nucleation. When T<T_{g}, diffusionless nucleation is obstructed due to the weak vibrational motion and the mechanical stability of the glassy state.
Collapse
Affiliation(s)
- Mengyuan Zhan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yanshuang Chen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhehua Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ning Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Peng Tan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
9
|
Herranz M, Benito J, Foteinopoulou K, Karayiannis NC, Laso M. Polymorph Stability and Free Energy of Crystallization of Freely-Jointed Polymers of Hard Spheres. Polymers (Basel) 2023; 15:polym15061335. [PMID: 36987117 PMCID: PMC10058036 DOI: 10.3390/polym15061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The free energy of crystallization of monomeric hard spheres as well as their thermodynamically stable polymorph have been known for several decades. In this work, we present semianalytical calculations of the free energy of crystallization of freely-jointed polymers of hard spheres as well as of the free energy difference between the hexagonal closed packed (HCP) and face-centered cubic (FCC) polymorphs. The phase transition (crystallization) is driven by an increase in translational entropy that is larger than the loss of conformational entropy of chains in the crystal with respect to chains in the initial amorphous phase. The conformational entropic advantage of the HCP polymer crystal over the FCC one is found to be ΔschHCP-FCC≈0.331×10-5k per monomer (expressed in terms of Boltzmann's constant k). This slight conformational entropic advantage of the HCP crystal of chains is by far insufficient to compensate for the larger translational entropic advantage of the FCC crystal, which is predicted to be the stable one. The calculated overall thermodynamic advantage of the FCC over the HCP polymorph is supported by a recent Monte Carlo (MC) simulation on a very large system of 54 chains of 1000 hard sphere monomers. Semianalytical calculations using results from this MC simulation yield in addition a value of the total crystallization entropy for linear, fully flexible, athermal polymers of Δs≈0.93k per monomer.
Collapse
Affiliation(s)
- Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Javier Benito
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Katerina Foteinopoulou
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
10
|
Abstract
Nucleation and growth are critical steps in crystallization, which plays an important role in determining crystal structure, size, morphology, and purity. Therefore, understanding the mechanisms of nucleation and growth is crucial to realize the controllable fabrication of crystalline products with desired and reproducible properties. Based on classical models, the initial crystal nucleus is formed by the spontaneous aggregation of ions, atoms, or molecules, and crystal growth is dependent on the monomer's diffusion and the surface reaction. Recently, numerous in situ investigations on crystallization dynamics have uncovered the existence of nonclassical mechanisms. This review provides a summary and highlights the in situ studies of crystal nucleation and growth, with a particular emphasis on the state-of-the-art research progress since the year 2016, and includes technological advances, atomic-scale observations, substrate- and temperature-dependent nucleation and growth, and the progress achieved in the various materials: metals, alloys, metallic compounds, colloids, and proteins. Finally, the forthcoming opportunities and challenges in this fascinating field are discussed.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330Braga, Portugal
| |
Collapse
|
11
|
Song YH, Ge J, Mao LB, Wang KH, Tai XL, Zhang Q, Tang L, Hao JM, Yao JS, Wang JJ, Ma T, Yang JN, Lan YF, Ru XC, Feng LZ, Zhang G, Lin Y, Zhang Q, Yao HB. Planar defect-free pure red perovskite light-emitting diodes via metastable phase crystallization. SCIENCE ADVANCES 2022; 8:eabq2321. [PMID: 36367940 PMCID: PMC9651863 DOI: 10.1126/sciadv.abq2321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Solution-processable all-inorganic CsPbI3-xBrx perovskite holds great potential for pure red light-emitting diodes. However, the widely existing defects in this mixed halide perovskite markedly limit the efficiency and stability of present light-emitting diode devices. We here identify that intragrain Ruddlesden-Popper planar defects are primary forms of such defects in the CsPbI3-xBrx thin film owing to the lattice strain caused by inhomogeneous halogen ion distribution. To eliminate these defects, we develop a stepwise metastable phase crystallization strategy to minimize the CsPbI3-xBrx perovskite lattice strain, which brings planar defect-free CsPbI3-xBrx thin film with improved radiative recombination, narrowed emission band, and enhanced spectral stability. Using these high-quality thin films, we fabricate spectrally stable pure red perovskite light-emitting diodes, showing 17.8% external quantum efficiency and 9000 candela meter-2 brightness with color coordinates required by Rec. 2020.
Collapse
Affiliation(s)
- Yong-Hui Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Ge
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li-Bo Mao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kun-Hua Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Lin Tai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qian Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Le Tang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing-Ming Hao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji-Song Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing-Jing Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao Ma
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun-Nan Yang
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Feng Lan
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xue-Chen Ru
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li-Zhe Feng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Hong-Bin Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Nie C, Peng F, Cao R, Cui K, Sheng J, Chen W, Li L. Recent progress in flow‐induced polymer crystallization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cui Nie
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Fan Peng
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Renkuan Cao
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Kunpeng Cui
- Department of Polymer Science and Engineering, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film University of Science and Technology of China Hefei China
| | - Junfang Sheng
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Wei Chen
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Liangbin Li
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| |
Collapse
|
13
|
Díaz Leines G, Rogal J. Template-Induced Precursor Formation in Heterogeneous Nucleation: Controlling Polymorph Selection and Nucleation Efficiency. PHYSICAL REVIEW LETTERS 2022; 128:166001. [PMID: 35522521 DOI: 10.1103/physrevlett.128.166001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
We present an atomistic study of heterogeneous nucleation in Ni employing transition path sampling, which reveals a template precursor-mediated mechanism of crystallization. Most notably, we find that the ability of tiny templates to modify the structural features of the liquid and promote the formation of precursor regions with enhanced bond-orientational order is key to determining their nucleation efficiency and the polymorphs that crystallize. Our results reveal an intrinsic link between structural liquid heterogeneity and the nucleating ability of templates, which significantly advances our understanding toward the control of nucleation efficiency and polymorph selection.
Collapse
Affiliation(s)
- Grisell Díaz Leines
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridgeshire CB2 1EW, United Kingdom
| | - Jutta Rogal
- Department of Chemistry, New York University, New York, New York 10003, USA and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
14
|
Konishi T, Okamoto D, Tadokoro D, Kawahara Y, Fukao K, Miyamoto Y. Kinetics of Polymer Crystallization with Aggregating Small Crystallites. PHYSICAL REVIEW LETTERS 2022; 128:107801. [PMID: 35333074 DOI: 10.1103/physrevlett.128.107801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The isothermal crystallization near the glass transition temperature from the melt state of poly(trimethylene terephthalate) has been studied by wide-angle x-ray diffraction (WAXD), small-angle x-ray scattering (SAXS), and optical microscopy. The SAXS and WAXD results show the crystallization mechanism in which the crystalline nodules cover the entire sample with the formation of aggregation regions. The analysis of the SAXS results using Kolmogorov-Johnson-Mehl-Avrami theory indicates that the formation kinetics of the aggregation regions is of three-dimensional homogeneous nucleation type. The analysis of the SAXS profiles using Sekimoto's theory provides the growth velocity and the nucleation rate of the aggregation region. The temperature dependence of the growth velocity of the aggregation region is a natural extrapolation of that of spherulite to the high supercooling region. The temperature dependence of the nucleation rate of the aggregation region is also represented by the parameters of the spherulitic growth rate. The result of the growth velocities of the aggregation region and the spherulite suggests the existence of precursors at the front of the crystal growth.
Collapse
Affiliation(s)
- Takashi Konishi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Daisuke Okamoto
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Daisuke Tadokoro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshitaka Kawahara
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Koji Fukao
- Department of Physics, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu 525-8577, Japan
| | - Yoshihisa Miyamoto
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Schwarz J, Leiderer P, Palberg T. Salt-concentration-dependent nucleation rates in low-metastability colloidal charged sphere melts containing small amounts of doublets. Phys Rev E 2021; 104:064607. [PMID: 35030906 DOI: 10.1103/physreve.104.064607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
We determined bulk crystal nucleation rates in aqueous suspensions of charged spheres at low metastability. Experiments were performed in dependence on electrolyte concentration and for two different particle number densities. The time-dependent nucleation rate shows a pronounced initial peak, while postsolidification crystal size distributions are skewed towards larger crystallite sizes. At each concentration, the nucleation rate density initially drops exponentially with increasing salt concentration. The full data set, however, shows an unexpected scaling of the nucleation rate densities with metastability times the number density of particles. Parameterization of our results in terms of classical nucleation theory reveals unusually low interfacial free energies of the nucleus surfaces and nucleation barriers well below the thermal energy. We tentatively attribute our observations to the presence of doublets introduced by the employed conditioning technique. We discuss the conditions under which such small seeds may induce nucleation.
Collapse
Affiliation(s)
- J Schwarz
- Institute of Physics, Johannes Gutenberg University, 55128 Mainz, Germany
| | - P Leiderer
- Fachbereicht Physik, University of Konstanz, 78457 Konstanz, Germany
| | - T Palberg
- Institute of Physics, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
16
|
Moore FJ, Royall CP, Liverpool TB, Russo J. Crystallisation and polymorph selection in active Brownian particles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:121. [PMID: 34580776 PMCID: PMC8476478 DOI: 10.1140/epje/s10189-021-00108-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
We explore crystallisation and polymorph selection in active Brownian particles with numerical simulation. In agreement with previous work (Wysocki et al. in Europhys Lett 105:48004, 2014), we find that crystallisation is suppressed by activity and occurs at higher densities with increasing Péclet number ([Formula: see text]). While the nucleation rate decreases with increasing activity, the crystal growth rate increases due to the accelerated dynamics in the melt. As a result of this competition, we observe the transition from a nucleation and growth regime at high [Formula: see text] to "spinodal nucleation" at low [Formula: see text]. Unlike the case of passive hard spheres, where preference for FCC over HCP polymorphs is weak, activity causes the annealing of HCP stacking faults, thus strongly favouring the FCC symmetry at high [Formula: see text]. When freezing occurs more slowly, in the nucleation and growth regime, this tendency is much reduced and we see a trend towards the passive case of little preference for either polymorph.
Collapse
Affiliation(s)
- Fergus J. Moore
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1FD UK
- H.H. Wills Physics Laboratory, Tyndall Ave., Bristol, BS8 1TL UK
| | - C. Patrick Royall
- H.H. Wills Physics Laboratory, Tyndall Ave., Bristol, BS8 1TL UK
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol, BS8 1TS UK
| | | | - John Russo
- School of Mathematics, University of Bristol, Bristol, BS8 1UG UK
- Department of Physics, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
17
|
Sanchez-Burgos I, Sanz E, Vega C, Espinosa JR. Fcc vs. hcp competition in colloidal hard-sphere nucleation: on their relative stability, interfacial free energy and nucleation rate. Phys Chem Chem Phys 2021; 23:19611-19626. [PMID: 34524277 DOI: 10.1039/d1cp01784e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hard-sphere crystallization has been widely investigated over the last six decades by means of colloidal suspensions and numerical methods. However, some aspects of its nucleation behaviour are still under debate. Here, we provide a detailed computational characterisation of the polymorphic nucleation competition between the face-centered cubic (fcc) and the hexagonal-close packed (hcp) hard-sphere crystal phases. By means of several state-of-the-art simulation techniques, we evaluate the melting pressure, chemical potential difference, interfacial free energy and nucleation rate of these two polymorphs, as well as of a random stacking mixture of both crystals. Our results highlight that, despite the fact that both polymorphs have very similar stability, the interfacial free energy of the hcp phase could be marginally higher than that of the fcc solid, which in consequence, mildly decreases its propensity to nucleate from the liquid compared to the fcc phase. Moreover, we analyse the abundance of each polymorph in grown crystals from different types of inserted nuclei: fcc, hcp and stacking disordered fcc/hcp seeds, as well as from those spontaneously emerged from brute force simulations. We find that post-critical crystals fundamentally grow maintaining the polymorphic structure of the critical nucleus, at least until moderately large sizes, since the only crystallographic orientation that allows stacking close-packed disorder is the fcc (111) plane, or equivalently the hcp (0001) one. Taken together, our results contribute with one more piece to the intricate puzzle of colloidal hard-sphere crystallization.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Eduardo Sanz
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Vega
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
18
|
Li C, Liu Z, Goonetilleke EC, Huang X. Temperature-dependent kinetic pathways of heterogeneous ice nucleation competing between classical and non-classical nucleation. Nat Commun 2021; 12:4954. [PMID: 34400646 PMCID: PMC8367957 DOI: 10.1038/s41467-021-25267-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/26/2021] [Indexed: 12/04/2022] Open
Abstract
Ice nucleation on the surface plays a vital role in diverse areas, ranging from physics and cryobiology to atmospheric science. Compared to ice nucleation in the bulk, the water-surface interactions present in heterogeneous ice nucleation complicate the nucleation process, making heterogeneous ice nucleation less comprehended, especially the relationship between the kinetics and the structures of the critical ice nucleus. Here we combine Markov State Models and transition path theory to elucidate the ensemble pathways of heterogeneous ice nucleation. Our Markov State Models reveal that the classical one-step and non-classical two-step nucleation pathways can surprisingly co-exist with comparable fluxes at T = 230 K. Interestingly, we find that the disordered mixing of rhombic and hexagonal ice leads to a favorable configurational entropy that stabilizes the critical nucleus, facilitating the non-classical pathway. In contrast, the favorable energetics promotes the formation of hexagonal ice, resulting in the classical pathway. Furthermore, we discover that, at elevated temperatures, the nucleation process prefers to proceed via the classical pathway, as opposed to the non-classical pathway, since the potential energy contributions override the configurational entropy compensation. This study provides insights into the mechanisms of heterogeneous ice nucleation and sheds light on the rational designs to control crystallization processes.
Collapse
Affiliation(s)
- Chu Li
- Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Zhuo Liu
- Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Eshani C Goonetilleke
- Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| |
Collapse
|
19
|
Zhang H, Barnard AS. Impact of atomistic or crystallographic descriptors for classification of gold nanoparticles. NANOSCALE 2021; 13:11887-11898. [PMID: 34190263 DOI: 10.1039/d1nr02258j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Machine learning models are known to be sensitive to the features used to train them, but there is currently no way to predict the impact of using different features prior to feature extraction. This is particularly important to fields such as nanotechnology that are highly multi-disciplinary, and samples can be characterised many different ways depending on the preferences of individual researchers. Does it matter if nanomaterials are described using the interatomic coordinations or more complex order parameters? In this study we compare results of supervised and unsupervised learning on a single set of gold nanoparticles that has been characterised by two different descriptors, each with a unique feature space. We find that there are some consistencies, and model selection is descriptor-agnostic, but the level of detail and the type of information that can be extracted from the results is sensitive to the way the particles are described. Unsupervised clustering revealed that an atomistic descriptor provides a finer-grained interpretation and clusters that are sub-clusters of a more sophisticated crystallographic descriptor, which is consistent with both how the features were calculated, and how they are interpreted in the domain. A supervised classifier revealed that the types of features responsible for the separation are related to the bulk structure, regardless of the descriptor, but capture different types of information. For both the atomistic and crystallographic descriptor the gradient boosting decision tree classifier gave superior results of F1-scores of 0.96 and 0.98, respectively, with excellent precision and recall, even though the clustering presented a challenging multi-classification problem.
Collapse
Affiliation(s)
- Haonan Zhang
- School of Computing, Australian National University, Acton 2601, Australia.
| | | |
Collapse
|
20
|
Ramos PM, Herranz M, Foteinopoulou K, Karayiannis NC, Laso M. Entropy-Driven Heterogeneous Crystallization of Hard-Sphere Chains under Unidimensional Confinement. Polymers (Basel) 2021; 13:1352. [PMID: 33919100 PMCID: PMC8122411 DOI: 10.3390/polym13091352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
We investigate, through Monte Carlo simulations, the heterogeneous crystallization of linear chains of tangent hard spheres under confinement in one dimension. Confinement is realized through flat, impenetrable, and parallel walls. A wide range of systems is studied with respect to their average chain lengths (N = 12 to 100) and packing densities (ϕ = 0.50 to 0.61). The local structure is quantified through the Characteristic Crystallographic Element (CCE) norm descriptor. Here, we split the phenomenon into the bulk crystallization, far from the walls, and the projected surface crystallization in layers adjacent to the confining surfaces. Once a critical volume fraction is met, the chains show a phase transition, starting from regions near the hard walls. The established crystal morphologies consist of alternating hexagonal close-packed or face-centered cubic layers with a stacking direction perpendicular to the confining walls. Crystal layer perfection is observed with an increasing concentration. As in the case of the unconstrained phase transition of athermal polymers at high densities, crystal nucleation and growth compete with the formation of sites of a fivefold local symmetry. While surface crystallites show perfection with a predominantly triangular character, the morphologies of square crystals or of a mixed type are also formed. The simulation results show that the rate of perfection of the surface crystallization is not significantly faster than that of the bulk crystallization.
Collapse
Affiliation(s)
| | | | | | - Nikos Ch. Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain; (P.M.R.); (M.H.); (K.F.); (M.L.)
| | | |
Collapse
|
21
|
Coli GM, Dijkstra M. An Artificial Neural Network Reveals the Nucleation Mechanism of a Binary Colloidal AB 13 Crystal. ACS NANO 2021; 15:4335-4346. [PMID: 33619953 PMCID: PMC7992132 DOI: 10.1021/acsnano.0c07541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Colloidal suspensions of two species have the ability to form binary crystals under certain conditions. The hunt for these functional materials and the countless investigations on their formation process are justified by the plethora of synergetic and collective properties these binary superlattices show. Among the many crystal structures observed over the past decades, the highly exotic colloidal icosahedral AB13 crystal was predicted to be stable in binary hard-sphere mixtures nearly 30 years ago, yet the kinetic pathway of how homogeneous nucleation occurs in this system is still unknown. Here we investigate binary nucleation of the AB13 crystal from a binary fluid phase of nearly hard spheres. We calculate the nucleation barrier and nucleation rate as a function of supersaturation and draw a comparison with nucleation of single-component and other binary crystals. To follow the nucleation process, we employ a neural network to identify the AB13 phase from the binary fluid phase and the competing fcc crystal with single-particle resolution and significant accuracy in the case of bulk phases. We show that AB13 crystal nucleation proceeds via a coassembly process where large spheres and icosahedral small-sphere clusters simultaneously attach to the nucleus. Our results lend strong support for a classical pathway that is well-described by classical nucleation theory, even though the binary fluid phase is highly structured and exhibits local regions of high bond orientational order.
Collapse
|
22
|
Sanchez-Burgos I, Garaizar A, Vega C, Sanz E, Espinosa JR. Parasitic crystallization of colloidal electrolytes: growing a metastable crystal from the nucleus of a stable phase. SOFT MATTER 2021; 17:489-505. [PMID: 33346291 DOI: 10.1039/d0sm01680b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal particles have been extensively used to comprehend the main principles governing liquid-crystal nucleation. Multiple mechanisms and frameworks have been proposed, through either experiments or computational approaches, to rationalise the ubiquitous formation of colloidal crystals. In this work, we elucidate the nucleation scenario behind the crystallization of oppositely charged colloids. By performing molecular dynamics simulations of colloidal electrolytes in combination with the Seeding technique, we evaluate the fundamental factors, such as the nucleation rate, free energy barrier, surface tension and kinetic pre-factor, that determine the liquid-to-solid transition of several crystalline polymorphs. Our results show that at a high packing fraction, there is a cross-over between the nucleation of the CsCl structure and that of a substitutionally disordered fcc phase, despite the CuAu crystal being the most stable phase. We demonstrate that the crucial factor in determining which phase nucleates the fastest is the free energy cost of the cluster formation rather than their kinetic ability to grow from the liquid. While at a low packing fraction, the stable phase, CsCl, is the one that nucleates and subsequently grows, we show how at moderate and high packing fractions, a disordered fcc phase subsequently grows regardless of the nature of the nucleating phase, termed parasitic crystallization. Taken together, our results provide a panoramic perspective of the complex nucleation scenario of oppositely charged colloids at moderate temperature and rationalise the different thermodynamic and kinetic aspects behind it.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Carlos Vega
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eduardo Sanz
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
23
|
Díaz Leines G, Michaelides A, Rogal J. Interplay of structural and dynamical heterogeneity in the nucleation mechanism in Ni. Faraday Discuss 2021; 235:406-415. [DOI: 10.1039/d1fd00099c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gaining fundamental understanding of crystal nucleation processes in metal alloys is crucial for the development and design of high-performance materials with targeted properties. Yet, crystallizationis a complex non-equilibrium process and,...
Collapse
|
24
|
Menon S, Díaz Leines G, Drautz R, Rogal J. Role of pre-ordered liquid in the selection mechanism of crystal polymorphs during nucleation. J Chem Phys 2020; 153:104508. [DOI: 10.1063/5.0017575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sarath Menon
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Grisell Díaz Leines
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Ralf Drautz
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Jutta Rogal
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
25
|
Li M, Chen Y, Tanaka H, Tan P. Revealing roles of competing local structural orderings in crystallization of polymorphic systems. SCIENCE ADVANCES 2020; 6:eaaw8938. [PMID: 32656336 PMCID: PMC7329355 DOI: 10.1126/sciadv.aaw8938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/15/2020] [Indexed: 05/27/2023]
Abstract
Most systems have more than two stable crystalline states in the phase diagram, which is known as polymorphism. Crystallization in such a system is often under strong influence of competing orderings linked to those crystals. However, how such competition affects crystal nucleation and ordering toward the final crystalline state is largely unknown. This is primarily because the competition takes place locally and thus is masked by large positional fluctuations. We develop a unique method to correctly identify local symmetries by removing their distortions due to positional fluctuations. This allows us to experimentally access the spatiotemporal fluctuations of local symmetries at a single-particle level in crystallization of a charged colloidal system near the body-centered cubic-face-centered cubic border. Thus, we successfully reveal the crucial roles of competing ordering in the initial selection of polymorphs and the final grain boundary motion toward the most stable state from a microscopic perspective.
Collapse
Affiliation(s)
- Minhuan Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yanshuang Chen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Peng Tan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
26
|
Liang Y, Díaz Leines G, Drautz R, Rogal J. Identification of a multi-dimensional reaction coordinate for crystal nucleation in Ni3Al. J Chem Phys 2020; 152:224504. [DOI: 10.1063/5.0010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yanyan Liang
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Grisell Díaz Leines
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Ralf Drautz
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jutta Rogal
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
27
|
Parreño O, Ramos PM, Karayiannis NC, Laso M. Self-Avoiding Random Walks as a Model to Study Athermal Linear Polymers under Extreme Plate Confinement. Polymers (Basel) 2020; 12:E799. [PMID: 32260075 PMCID: PMC7240602 DOI: 10.3390/polym12040799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023] Open
Abstract
Monte Carlo (MC) simulations, built around chain-connectivity-altering moves and a wall-displacement algorithm, allow us to simulate freely-jointed chains of tangent hard spheres of uniform size under extreme confinement. The latter is realized through the presence of two impenetrable, flat, and parallel plates. Extreme conditions correspond to the case where the distance between the plates approaches the monomer size. An analysis of the local structure, based on the characteristic crystallographic element (CCE) norm, detects crystal nucleation and growth at packing densities well below the ones observed in bulk analogs. In a second step, we map the confined polymer chains into self-avoiding random walks (SAWs) on restricted lattices. We study all realizations of the cubic crystal system: simple, body centered, and face centered cubic crystals. For a given chain size (SAW length), lattice type, origin of SAW, and level of confinement, we enumerate all possible SAWs (equivalently all chain conformations) and calculate the size distribution. Results for intermediate SAW lengths are used to predict the behavior of long, fully entangled chains through growth formulas. The SAW analysis will allow us to determine the corresponding configurational entropy, as it is the driving force for the observed phase transition and the determining factor for the thermodynamic stability of the corresponding crystal morphologies.
Collapse
Key Words
- confinement, crystallization, entropy, hard sphere, polymer, random walk, Monte Carlo, phase transition, lattice model, cubic crystal system, direct enumeration
Collapse
Affiliation(s)
| | | | - Nikos Ch. Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politecnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain; (O.P.); (P.M.R.); (M.L.)
| | | |
Collapse
|
28
|
|
29
|
Hussain S, Haji-Akbari A. Studying rare events using forward-flux sampling: Recent breakthroughs and future outlook. J Chem Phys 2020; 152:060901. [DOI: 10.1063/1.5127780] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sarwar Hussain
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
30
|
Fiorucci G, Coli GM, Padding JT, Dijkstra M. The effect of hydrodynamics on the crystal nucleation of nearly hard spheres. J Chem Phys 2020; 152:064903. [DOI: 10.1063/1.5137815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Giulia Fiorucci
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Gabriele M. Coli
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Johan T. Padding
- Process and Energy Department, TU Delft, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
31
|
Tateno M, Yanagishima T, Russo J, Tanaka H. Influence of Hydrodynamic Interactions on Colloidal Crystallization. PHYSICAL REVIEW LETTERS 2019; 123:258002. [PMID: 31922768 DOI: 10.1103/physrevlett.123.258002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 06/10/2023]
Abstract
One of the biggest unresolved problems in crystallization phenomena is the significant discrepancy in the nucleation rate between experiments and simulations even for the simplest liquid, i.e., the hard-sphere system. A popular explanation for this discrepancy is the neglect of hydrodynamic interactions (HI) in simulation studies. By comparing simulations with and without HI, we show that the long-time diffusive dynamics of the colloids is slowed down more rapidly by hydrodynamic lubrication effects with increasing volume fraction. We find that the kinetics of both nucleation and growth are controlled by this long-time diffusion and that it is possible to account for most of the effects of HI by rescaling with this timescale. Therefore, we conclude that HI is not the primary cause of the accelerated nucleation rates observed in experiments.
Collapse
Affiliation(s)
- Michio Tateno
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Taiki Yanagishima
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - John Russo
- Department of Physics, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
32
|
A surface-stacking structural model for icosahedral quasicrystals. Struct Chem 2019. [DOI: 10.1007/s11224-019-01413-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Mondal D, Bandyopadhyay SN, Goswami D. Elucidating optical field directed hierarchical self-assembly of homogenous versus heterogeneous nanoclusters with femtosecond optical tweezers. PLoS One 2019; 14:e0223688. [PMID: 31671114 PMCID: PMC6822744 DOI: 10.1371/journal.pone.0223688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/25/2019] [Indexed: 12/03/2022] Open
Abstract
Insights into the morphology of nanoclusters would facilitate the design of nano-devices with improved optical, electrical, and magnetic responses. We have utilized optical gradient forces for the directed self-assembly of colloidal clusters using high-repetition-rate femtosecond laser pulses to delineate their structure and dynamics. We have ratified our experiments with theoretical models derived from the Langevin equation and defined the valid ranges of applicability. Our femtosecond optical tweezer-based technique characterizes the in-situ formation of hierarchical self-assembled clusters of homomers as well as heteromers by analyzing the back focal plane displacement signal. This technique is able to efficiently distinguish between nano-particles in heterogeneous clusters and is in accordance with our theory. Herein, we report results from our technique, and also develop a model to describe the mechanism of such processes where corner frequency changes. We show how the corner frequency changes enables us to recognize the structure and dynamics of the coagulation of colloidal homogeneous and heterogeneous clusters in condensed media over a broad range of nanoparticle sizes. The methods described here are advantageous, as the backscatter position-sensitive detection probes the in-situ self-assembly process while other light scattering approaches are leveraged for the characterization of isolated clusters.
Collapse
Affiliation(s)
- Dipankar Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | | | - Debabrata Goswami
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
- Center for Laser and Photonics, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
34
|
Zhang TH, Zhang ZC, Cao JS, Liu XY. Can the pathway of stepwise nucleation be predicted and controlled? Phys Chem Chem Phys 2019; 21:7398-7405. [PMID: 30912550 DOI: 10.1039/c9cp00822e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Predicting the critical nucleus size and the nucleation barrier is of central importance in controlling the dynamics of nucleation. However, as the nucleation of a crystal involves intermediate states, the prediction becomes inaccessible with currently available models. Here, we show that based on single-particle level observations, the properties of crystal nuclei in a microscopic stepwise nucleation (MSN) can be well-quantified by incorporating the size and structure order parameter into the formula of free energy without prior knowledge of interfacial tension. The quantified free energy reveals that the intermediate structures arise from thermodynamics rather than kinetics. Precritical and postcritical nuclei are distinct not only in structure but also in the mechanism of crystalline ordering. The relative stability of intermediate structures and the pathway of nucleation can be well-controlled by supercooling. Our studies offer a successful approach to quantify MSN and shed new light on resolving the long-standing discrepancies between simulations and experiments.
Collapse
Affiliation(s)
- Tian Hui Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, P. R. China.
| | | | | | | |
Collapse
|
35
|
Zhang Q, Wang J, Tang S, Wang Y, Li J, Zhou W, Wang Z. Molecular dynamics investigation of the local structure in iron melts and its role in crystal nucleation during rapid solidification. Phys Chem Chem Phys 2019; 21:4122-4135. [DOI: 10.1039/c8cp05654d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleation process of a bcc crystal after the formation of an MRO cluster.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Jincheng Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Sai Tang
- Powder Metallurgy Research Institute, Central South University
- Changsha
- P. R. China
| | - Yujian Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Junjie Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Wenquan Zhou
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Zhijun Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| |
Collapse
|
36
|
Zubieta I, Vázquez del Saz M, Llombart P, Vega C, Noya EG. Nucleation of pseudo hard-spheres and dumbbells at moderate metastability: appearance of A15 Frank–Kasper phase at intermediate elongations. Phys Chem Chem Phys 2019; 21:1656-1670. [PMID: 30383878 DOI: 10.1039/c8cp04964e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal nucleation of repulsive hard-dumbbells from the sphere to the two tangent spheres limit is investigated at moderately high metastability by brute-force molecular dynamics simulations.
Collapse
Affiliation(s)
- Itziar Zubieta
- Instituto de Química Física Rocasolano
- Consejo Superior de Investigaciones Científicas
- CSIC
- 28006 Madrid
- Spain
| | - Miguel Vázquez del Saz
- Instituto de Química Física Rocasolano
- Consejo Superior de Investigaciones Científicas
- CSIC
- 28006 Madrid
- Spain
| | - Pablo Llombart
- Instituto de Química Física Rocasolano
- Consejo Superior de Investigaciones Científicas
- CSIC
- 28006 Madrid
- Spain
| | - Carlos Vega
- Departamento de Química Física (Unidad Asociada de I+D+i al CSIC)
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Eva G. Noya
- Instituto de Química Física Rocasolano
- Consejo Superior de Investigaciones Científicas
- CSIC
- 28006 Madrid
- Spain
| |
Collapse
|
37
|
Tang X, Yang J, Tian F, Xu T, Xie C, Chen W, Li L. Flow-induced density fluctuation assisted nucleation in polyethylene. J Chem Phys 2018; 149:224901. [PMID: 30553254 DOI: 10.1063/1.5054273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xiaoliang Tang
- National Synchrotron Radiation Lab and CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, China
| | - Junsheng Yang
- National Synchrotron Radiation Lab and CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, China
- Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin, China
| | - Fucheng Tian
- National Synchrotron Radiation Lab and CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, China
| | - Tingyu Xu
- National Synchrotron Radiation Lab and CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, China
| | - Chun Xie
- National Synchrotron Radiation Lab and CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, China
| | - Wei Chen
- National Synchrotron Radiation Lab and CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, China
| | - Liangbin Li
- National Synchrotron Radiation Lab and CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, China
| |
Collapse
|
38
|
Ajlouni R. A seed-based structural model for constructing rhombic quasilattice with 7-fold symmetry. Struct Chem 2018. [DOI: 10.1007/s11224-018-1169-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Sun B, Barron H, Wells B, Opletal G, Barnard AS. Correlating anisotropy and disorder with the surface structure of platinum nanoparticles. NANOSCALE 2018; 10:20393-20404. [PMID: 30376019 DOI: 10.1039/c8nr06450d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Due to the competition between numerous physicochemical variables during formation and processing, platinum nanocatalysts typically contain a mixture of shapes, distributions of sizes, and a considerable degree of surface imperfection. Structural imperfection and sample polydispersivity are inevitable at scale, but accepting bulk and surface diversity as legitimate design features provides new opportunities for nanoparticle design. In recent years disorder and anisotropy have been embraced as useful design parameters but predicting the impact of uncontrollable imperfection a priori is challenging. In the present work we have created an ensemble of uniquely imperfect nanoparticles extracted from classical molecular dynamics trajectories and applied statistical filters to restrict the ensemble in ways that reflect common industrial design principles. We find that targeting different sizes and size distributions may be an effective way of promoting or suppressing internal disorder or crystallinity (as required), but the degree of anisotropy of the particle as a whole has a greater impact on the population of different types of surface ordering and active sites. These results indicate that tuning of disordered and anisotropic Pt nanoparticles is possible, but it is not as straightforward as geometrically ideal nanoparticles with a high degree of crystallinity. It is unlikely that a synthesis strategy could eliminate this diversity entirely, or ensure this type of structural complexity does not develop post-synthesis under operational conditions, but it may be possible to bias the formation of specific bulk structures and the surface anisotropy.
Collapse
Affiliation(s)
- Baichuan Sun
- Data61 CSIRO, Door 34 Goods Shed Village St, Docklands, Victoria, Australia.
| | | | | | | | | |
Collapse
|
40
|
Díaz Leines G, Rogal J. Maximum Likelihood Analysis of Reaction Coordinates during Solidification in Ni. J Phys Chem B 2018; 122:10934-10942. [DOI: 10.1021/acs.jpcb.8b08718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Grisell Díaz Leines
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jutta Rogal
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
41
|
Morales-Barrera DA, Rodríguez-Gattorno G, Carvente O. Reversible Self-Assembly (fcc-bct) Crystallization of Confined Granular Spheres via a Shear Dimensionality Mechanism. PHYSICAL REVIEW LETTERS 2018; 121:074302. [PMID: 30169067 DOI: 10.1103/physrevlett.121.074302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/16/2018] [Indexed: 06/08/2023]
Abstract
By combining vibrational annealing and shear dimensionality, we experimentally show (1) a fast reversible crystallization fcc-bct (face-centered cubic-body-centered tetragonal) in a granular system that is composed of dissipative millimeter-sized dry spheres, (2) a two-dimensional (planar) shear promotes self-assembly into an fcc crystal, while one-dimensional shear produces a bct crystal, and (3) in analogy with heterogeneous nucleation, a granular temperature gradient leads to the formation of crystal domains showing competition of polymorphic phases in the cold regions. Our findings suggest that controlling the directionality of the interactions steers to reversible crystallization of hard spheres, adds clues for theoretical studies, and provides a novel mechanism for the technological development of the applications of self-assembling phononic crystals.
Collapse
Affiliation(s)
- D A Morales-Barrera
- Departamento de Física Aplicada, CINVESTAV-Mérida, Apartado Postal 73 Cordemex, Mérida, Yucatán 97310, México
| | - G Rodríguez-Gattorno
- Departamento de Física Aplicada, CINVESTAV-Mérida, Apartado Postal 73 Cordemex, Mérida, Yucatán 97310, México
| | - O Carvente
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Mérida, Yucatán 97310, México
| |
Collapse
|
42
|
Schaertl N, Botin D, Palberg T, Bartsch E. Formation of Laves phases in buoyancy matched hard sphere suspensions. SOFT MATTER 2018; 14:5130-5139. [PMID: 29881859 DOI: 10.1039/c7sm02348k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Colloidal Laves phases (LPs) are promising precursors for photonic materials. Laves phases have not yet been observed to form in experiments on colloidal suspensions of hard spheres (HS), even though they have been reported in computer simulations. LP formation so far has been achieved only for binary mixtures of colloidal charged spheres or ligand-stabilized nano-particles after drying. Using static light scattering, we monitored LP formation and annealing in a binary mixture of buoyant hard sphere approximants (size ratio Γ = 0.77, number or molar fraction of small spheres xS = 0.76) for volume fractions in the fluid-crystal coexistence regions. All samples spontaneously formed MgZn2 type LPs on the time scale of weeks to months via bulk nucleation and growth. Irrespective of the initial suspension volume fractions, the LP volume fraction at coexistence is ΦCOEX = 0.59 which is significantly below the close packing limit ΦMAX = 0.615 and remarkably close to the expectation from simulation. At low volume fractions, crystals anneal to high quality during coarsening which is in line with recent theoretical expectations for the thermodynamic stability of different LP types. At large volume fractions, however, the diffractograms evolve towards a more MgCu2-like appearance which we attribute to the formation of randomly stacked LPs. Such structures are not known from atomic systems.
Collapse
Affiliation(s)
- N Schaertl
- Institut für Makromolekulare Chemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
43
|
Richard D, Speck T. Crystallization of hard spheres revisited. I. Extracting kinetics and free energy landscape from forward flux sampling. J Chem Phys 2018; 148:124110. [PMID: 29604868 DOI: 10.1063/1.5016277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigate the kinetics and the free energy landscape of the crystallization of hard spheres from a supersaturated metastable liquid though direct simulations and forward flux sampling. In this first paper, we describe and test two different ways to reconstruct the free energy barriers from the sampled steady state probability distribution of cluster sizes without sampling the equilibrium distribution. The first method is based on mean first passage times, and the second method is based on splitting probabilities. We verify both methods for a single particle moving in a double-well potential. For the nucleation of hard spheres, these methods allow us to probe a wide range of supersaturations and to reconstruct the kinetics and the free energy landscape from the same simulation. Results are consistent with the scaling predicted by classical nucleation theory although a quantitative fit requires a rather large effective interfacial tension.
Collapse
Affiliation(s)
- David Richard
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
44
|
Carter BMGD, Turci F, Ronceray P, Royall CP. Structural covariance in the hard sphere fluid. J Chem Phys 2018; 148:204511. [PMID: 29865800 DOI: 10.1063/1.5024462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We study the joint variability of structural information in a hard sphere fluid biased to avoid crystallisation and form five-fold symmetric geometric motifs. We show that the structural covariance matrix approach, originally proposed for on-lattice liquids [P. Ronceray and P. Harrowell, J. Stat. Mech.: Theory Exp. 2016(8), 084002], can be meaningfully employed to understand structural relationships between different motifs and can predict, within the linear-response regime, structural changes related to motifs distinct from that used to bias the system.
Collapse
Affiliation(s)
| | - Francesco Turci
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Pierre Ronceray
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
| | - C Patrick Royall
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
45
|
Ji X, Sun Z, Ouyang W, Xu S. Crystal nucleation and metastable bcc phase in charged colloids: A molecular dynamics study. J Chem Phys 2018; 148:174904. [DOI: 10.1063/1.5016235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xinqiang Ji
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Sun
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenze Ouyang
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shenghua Xu
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Niu R, Heidt S, Sreij R, Dekker RI, Hofmann M, Palberg T. Formation of a transient amorphous solid in low density aqueous charged sphere suspensions. Sci Rep 2017; 7:17044. [PMID: 29213089 PMCID: PMC5719089 DOI: 10.1038/s41598-017-17106-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/22/2017] [Indexed: 11/09/2022] Open
Abstract
Colloidal glasses formed from hard spheres, nearly hard spheres, ellipsoids and platelets or their attractive variants, have been studied in great detail. Complementing and constraining theoretical approaches and simulations, the many different types of model systems have significantly advanced our understanding of the glass transition in general. Despite their early prediction, however, no experimental charged sphere glasses have been found at low density, where the competing process of crystallization prevails. We here report the formation of a transient amorphous solid formed from charged polymer spheres suspended in thoroughly deionized water at volume fractions of 0.0002-0.01. From optical experiments, we observe the presence of short-range order and an enhanced shear rigidity as compared to the stable polycrystalline solid of body centred cubic structure. On a density dependent time scale of hours to days, the amorphous solid transforms into this stable structure. We further present preliminary dynamic light scattering data showing the evolution of a second slow relaxation process possibly pointing to a dynamic heterogeneity known from other colloidal glasses and gels. We compare our findings to the predicted phase behaviour of charged sphere suspensions and discuss possible mechanisms for the formation of this peculiar type of colloidal glass.
Collapse
Affiliation(s)
- Ran Niu
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany.
| | - Sabrina Heidt
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany
- Graduate School Materials Science in Mainz, Staudinger Weg 9, D-55128, Mainz, Germany
| | - Ramsia Sreij
- Department of Chemistry Physical and Biophysical Chemistry (PC III), Bielefeld University, D-33615, Bielefeld, Germany
| | - Riande I Dekker
- Debye Institute for Nanomaterials Science, Utrecht University, NL-3584 CC, Utrecht, The Netherlands
| | - Maximilian Hofmann
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany
| | - Thomas Palberg
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany
| |
Collapse
|
47
|
Zhang F. Nonclassical nucleation pathways in protein crystallization. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:443002. [PMID: 28984274 DOI: 10.1088/1361-648x/aa8253] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.
Collapse
Affiliation(s)
- Fajun Zhang
- Universität Tübingen, Institut für Angewandte Physik, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Li H, Chavez AD, Li H, Li H, Dichtel WR, Bredas JL. Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5. J Am Chem Soc 2017; 139:16310-16318. [DOI: 10.1021/jacs.7b09169] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Haoyuan Li
- School
of Chemistry and Biochemistry, Center for Organic Photonics and Electronics
(COPE), Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- Laboratory
for Computational and Theoretical Chemistry of Advanced Materials,
Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Anton D. Chavez
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Huifang Li
- Laboratory
for Computational and Theoretical Chemistry of Advanced Materials,
Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hong Li
- School
of Chemistry and Biochemistry, Center for Organic Photonics and Electronics
(COPE), Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- Laboratory
for Computational and Theoretical Chemistry of Advanced Materials,
Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - William R. Dichtel
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jean-Luc Bredas
- School
of Chemistry and Biochemistry, Center for Organic Photonics and Electronics
(COPE), Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- Laboratory
for Computational and Theoretical Chemistry of Advanced Materials,
Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
49
|
Ríos de Anda I, Turci F, Sear RP, Royall CP. Long-lived non-equilibrium interstitial solid solutions in binary mixtures. J Chem Phys 2017; 147:124504. [DOI: 10.1063/1.4985917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Francesco Turci
- H.H. Wills Physics Laboratory, Tyndall Ave., Bristol BS8 1TL, United Kingdom
| | - Richard P. Sear
- Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - C. Patrick Royall
- H.H. Wills Physics Laboratory, Tyndall Ave., Bristol BS8 1TL, United Kingdom
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
| |
Collapse
|
50
|
Chaudhuri M, Allahyarov E, Löwen H, Egelhaaf SU, Weitz DA. Triple Junction at the Triple Point Resolved on the Individual Particle Level. PHYSICAL REVIEW LETTERS 2017; 119:128001. [PMID: 29341657 DOI: 10.1103/physrevlett.119.128001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 06/07/2023]
Abstract
At the triple point of a repulsive screened Coulomb system, a fcc crystal, a bcc crystal, and a fluid phase coexist. At their intersection, these three phases form a liquid groove, the triple junction. Using confocal microscopy, we resolve the triple junction on a single-particle level in a model system of charged PMMA colloids in a nonpolar solvent. The groove is found to be extremely deep and the incommensurate solid-solid interface to be very broad. Thermal fluctuations hence appear to dominate the solid-solid interface. This indicates a very low interfacial energy. The fcc-bcc interfacial energy is quantitatively determined based on Young's equation and, indeed, it is only about 1.3 times higher than the fcc-fluid interfacial energy close to the triple point.
Collapse
Affiliation(s)
- M Chaudhuri
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Institute for Theoretical Physics II: Soft Matter, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - E Allahyarov
- Institute for Theoretical Physics II: Soft Matter, Heinrich Heine University, 40225 Düsseldorf, Germany
- Theoretical Department, Joint Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow 125412, Russia
| | - H Löwen
- Institute for Theoretical Physics II: Soft Matter, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - S U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - D A Weitz
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|