1
|
Liang J, Feng X, Zheng N, Wang H, Ni R, Zhang Z. Glass Transition in Monolayers of Rough Colloidal Ellipsoids. PHYSICAL REVIEW LETTERS 2025; 134:038202. [PMID: 39927969 DOI: 10.1103/physrevlett.134.038202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 02/11/2025]
Abstract
Structure-dynamics correlation is one of the major ongoing debates in the glass transition, although a number of structural features have been found connected to the dynamic heterogeneity in different glass-forming colloidal systems. Here, using colloidal experiments combined with coarse-grained molecular dynamics simulations, we investigate the glass transition in monolayers of rough colloidal ellipsoids. Compared with smooth colloidal ellipsoids, the surface roughness of ellipsoids is found to significantly change the nature of glass transition. In particular, we find that the surface roughness induced by coating only a few small hemispheres on the ellipsoids can eliminate the existence of orientational glass and the two-step glass transition found in monolayers of smooth ellipsoids. This is due to the surface roughness-induced coupling between the translational and rotational degrees of freedom in colloidal ellipsoids, which also destroys the structure-dynamics correlation found in glass-forming suspensions of colloidal ellipsoids. Our results not only suggest a new way of using surface roughness to manipulate the glass transition in colloidal systems, but also highlight the importance of detailed particle shape on the glass transition and structure-dynamics correlation in suspensions of anisotropic colloids.
Collapse
Affiliation(s)
- Jian Liang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou 215123, China
| | - Xuan Feng
- Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, 62 Nanyang Drive, 637459, Singapore
| | - Ning Zheng
- Beijing Institute of Technology, School of Physics, Beijing 100081, China
| | - Huaguang Wang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou 215123, China
| | - Ran Ni
- Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, 62 Nanyang Drive, 637459, Singapore
| | - Zexin Zhang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou 215123, China
- Soochow University, Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Suzhou 215006, China
| |
Collapse
|
2
|
Chaki S, Mei B, Schweizer KS. Theoretical analysis of the structure, thermodynamics, and shear elasticity of deeply metastable hard sphere fluids. Phys Rev E 2024; 110:034606. [PMID: 39425383 DOI: 10.1103/physreve.110.034606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
The structure, thermodynamics, and slow activated dynamics of the equilibrated metastable regime of glass-forming fluids remain a poorly understood problem of high theoretical and experimental interest. We apply a highly accurate microscopic equilibrium liquid state integral equation theory, in conjunction with naïve mode coupling theory of particle localization, to study in a unified manner the structural correlations, thermodynamic properties, and dynamic elastic shear modulus in deeply metastable hard sphere fluids. Distinctive behaviors are predicted including divergent inverse critical power laws for the contact value of the pair correlation function, pressure, and inverse dimensionless compressibility, and a splitting of the second peak and large suppression of interstitial configurations of the pair correlation function. The dynamic elastic modulus is predicted to exhibit two distinct exponential growth regimes with packing fraction that have strongly different slopes. These thermodynamic, structural, and elastic modulus results are consistent with simulations and experiments. Perhaps most unexpectedly, connections between the amplitude of long wavelength density fluctuations, dimensionless compressibility, local structure, and the dynamic elastic shear modulus have been theoretically elucidated. These connections are more broadly relevant to understanding the slow activated relaxation and mechanical response of colloidal suspensions in the ultradense metastable region and deeply supercooled thermal liquids in equilibrium.
Collapse
Affiliation(s)
- Subhasish Chaki
- Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Institut für Theoretische Physik II-Soft Matter, Heinrich-Heine-Universität, Düsseldorf-40225, Germany
| | | | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Departments of Chemistry and Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
3
|
Al Harraq A, Bharti B. Increasing aspect ratio of particles suppresses buckling in shells formed by drying suspensions. SOFT MATTER 2020; 16:9643-9647. [PMID: 32954396 DOI: 10.1039/d0sm01467b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Solvent evaporation in unpinned droplets of colloidal suspensions leads to the formation of porous shells which buckle under the pressure differential imposed by drying. We investigate the role of aspect ratio of rod-shaped particles in suppressing such buckling instabilities. Longer, thinner rods pack into permeable shells with consequently lower Darcy's pressure and thus avoid buckling.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | |
Collapse
|
4
|
Ghosh A, Chaudhary G, Kang JG, Braun PV, Ewoldt RH, Schweizer KS. Linear and nonlinear rheology and structural relaxation in dense glassy and jammed soft repulsive pNIPAM microgel suspensions. SOFT MATTER 2019; 15:1038-1052. [PMID: 30657517 DOI: 10.1039/c8sm02014k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations (c) that span the fluid, glassy and putative "soft jammed" regimes. In the glassy regime we measure a linear elastic dynamic shear modulus over 3 decades which follows an apparent power law concentration dependence G' ∼ c5.64, a variation that appears distinct from prior studies of crosslinked ionic microgel suspensions. At very high concentrations there is a sharp crossover to a nearly linear growth of the modulus. To theoretically understand these observations, we formulate an approach to address all three regimes within a single conceptual Brownian dynamics framework. A minimalist single particle description is constructed that allows microgel size to vary with concentration due to steric de-swelling effects. Using a Hertzian repulsion interparticle potential and a suite of statistical mechanical theories, quantitative predictions under quiescent conditions of microgel collective structure, dynamic localization length, elastic modulus, and the structural relaxation time are made. Based on a constant inter-particle repulsion strength parameter which is determined by requiring the theory to reproduce the linear elastic shear modulus over the entire concentration regime, we demonstrate good agreement between theory and experiment. Testable predictions are then made. We also measured nonlinear rheological properties with a focus on the yield stress and strain. A theoretical analysis with no adjustable parameters predicts how the quiescent structural relaxation time changes under deformation, and how the yield stress and strain change as a function of concentration. Reasonable agreement with our observations is obtained. To the best of our knowledge, this is the first attempt to quantitatively understand structure, quiescent relaxation and shear elasticity, and nonlinear yielding of dense microgel suspensions using microscopic force based theoretical methods that include activated hopping processes. We expect our approach will be useful for other soft polymeric particle suspensions in the core-shell family.
Collapse
Affiliation(s)
- Ashesh Ghosh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
5
|
Gao Y, Farkas V, Dullens RPA, Aarts DGAL. Structural disorder, filament growth and self-poisoning in short rods confined onto a flat wall. SOFT MATTER 2017; 13:8678-8683. [PMID: 29051962 DOI: 10.1039/c7sm01761h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Confocal microscopy was used to directly observe the structural coarsening of the first layer of short colloidal rods sedimented onto a flat wall. Based on an image analysis algorithm we devised, quantitative information on the location, orientation and length of each particle can be extracted with high precision. At high density the system undergoes structural arrest, and becomes trapped in a disordered state of randomly arranged filaments that are composed of side-by-side aligned rods. The frustration of structural order is signalled by a new peak that emerges in the radial distribution function. Configuration analysis shows that the peak is primarily due to pairs of particles that are arranged in a "T" shape, a configuration that is compatible with neither crystallization nor filament growth. Our results point to a self-poisoning mechanism for the frustration of structural order, and highlight the importance of particle shape in controlling colloidal assembly thus materials properties.
Collapse
Affiliation(s)
- Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangzhou, 518060, China.
| | | | | | | |
Collapse
|
6
|
Heptner N, Chu F, Lu Y, Lindner P, Ballauff M, Dzubiella J. Nonequilibrium structure of colloidal dumbbells under oscillatory shear. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052311. [PMID: 26651699 DOI: 10.1103/physreve.92.052311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 06/05/2023]
Abstract
We investigate the nonequilibrium behavior of dense, plastic-crystalline suspensions of mildly anisotropic colloidal hard dumbbells under the action of an oscillatory shear field by employing Brownian dynamics computer simulations. In particular, we extend previous investigations, where we uncovered nonequilibrium phase transitions, to other aspect ratios and to a larger nonequilibrium parameter space, that is, a wider range of strains and shear frequencies. We compare and discuss selected results in the context of scattering and rheological experiments. Both simulations and experiments demonstrate that the previously found transitions from the plastic crystal phase with increasing shear strain also occur at other aspect ratios. We explore the transition behavior in the strain-frequency phase and summarize it in a nonequilibrium phase diagram. Additionally, the experimental rheology results hint at a slowing down of the colloidal dynamics with higher aspect ratio.
Collapse
Affiliation(s)
- Nils Heptner
- Institut für Weiche Materie und funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany
| | - Fangfang Chu
- Institut für Weiche Materie und funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany
| | - Yan Lu
- Institut für Weiche Materie und funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Peter Lindner
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Matthias Ballauff
- Institut für Weiche Materie und funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany
| | - Joachim Dzubiella
- Institut für Weiche Materie und funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany
| |
Collapse
|
7
|
Heptner N, Dzubiella J. Equilibrium structure and fluctuations of suspensions of colloidal dumbbells. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1022609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nils Heptner
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin , Berlin, Germany, Institut für Physik, Humboldt-Universität zu Berlin , Berlin, Germany
| | - Joachim Dzubiella
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin , Berlin, Germany, Institut für Physik, Humboldt-Universität zu Berlin , Berlin, Germany
| |
Collapse
|
8
|
Xu WS, Duan X, Sun ZY, An LJ. Glass formation in a mixture of hard disks and hard ellipses. J Chem Phys 2015; 142:224506. [DOI: 10.1063/1.4922379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wen-Sheng Xu
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Li-Jia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
9
|
Switching plastic crystals of colloidal rods with electric fields. Nat Commun 2015; 5:3092. [PMID: 24446033 PMCID: PMC3905722 DOI: 10.1038/ncomms4092] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/11/2013] [Indexed: 11/08/2022] Open
Abstract
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications.
Collapse
|
10
|
Structural signatures of dynamic heterogeneities in monolayers of colloidal ellipsoids. Nat Commun 2014; 5:3829. [PMID: 24807069 PMCID: PMC4024749 DOI: 10.1038/ncomms4829] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/08/2014] [Indexed: 11/21/2022] Open
Abstract
When a liquid is supercooled towards the glass transition, its dynamics drastically slows down, whereas its static structure remains relatively unchanged. Finding a structural signature of the dynamic slowing down is a major challenge, yet it is often too subtle to be uncovered. Here we discover the structural signatures for both translational and rotational dynamics in monolayers of colloidal ellipsoids by video microscopy experiments and computer simulations. The correlation lengths of the dynamic slowest-moving clusters, the static glassy clusters, the static local structural entropy and the dynamic heterogeneity follow the same power-law divergence, suggesting that the kinetic slowing down is caused by a decrease in the structural entropy and an increase in the size of the glassy cluster. Ellipsoids with different aspect ratios exhibit single- or double-step glass transitions with distinct dynamic heterogeneities. These findings demonstrate that the particle shape anisotropy has important effects on the structure and dynamics of the glass. To establish a structural signature of slow dynamics as a system approaches the glass transition is challenging. Here, the authors identify, by performing video microscopy experiments and simulations, two structural signatures for the rotational and translational dynamics in monolayers of colloidal ellipsoids.
Collapse
|
11
|
Jadrich R, Schweizer KS. Equilibrium theory of the hard sphere fluid and glasses in the metastable regime up to jamming. II. Structure and application to hopping dynamics. J Chem Phys 2013; 139:054502. [DOI: 10.1063/1.4816276] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
12
|
Mishra CK, Rangarajan A, Ganapathy R. Two-step glass transition induced by attractive interactions in quasi-two-dimensional suspensions of ellipsoidal particles. PHYSICAL REVIEW LETTERS 2013; 110:188301. [PMID: 23683247 DOI: 10.1103/physrevlett.110.188301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Indexed: 06/02/2023]
Abstract
We study experimentally the glass transition dynamics in quasi-two-dimensional suspensions of colloidal ellipsoids, aspect ratio α=2.1, with repulsive as well as attractive interactions. For the purely repulsive case, we find that the orientational and translational glass transitions occur at the same area fraction. Strikingly, for intermediate depletion attraction strengths, we find that the orientational glass transition precedes the translational one. By quantifying structure and dynamics, we show that quasi-long-range ordering is promoted at these attraction strengths, which subsequently results in a two-step glass transition. Most interestingly, within experimental certainty, we observe reentrant glass dynamics only in the translational degrees of freedom.
Collapse
Affiliation(s)
- Chandan K Mishra
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| | | | | |
Collapse
|
13
|
Kang K, Dhont JKG. Glass transition in suspensions of charged rods: structural arrest and texture dynamics. PHYSICAL REVIEW LETTERS 2013; 110:015901. [PMID: 23383809 DOI: 10.1103/physrevlett.110.015901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Indexed: 05/20/2023]
Abstract
We report on the observation of a glass transition in suspensions of very long and thin, highly charged colloidal rods (fd-virus particles). Structural particle arrest is found to occur at a low ionic strength due to caging of the charged rods in the potential setup by their neighbors through long-ranged electrostatic interactions. The relaxation time of density fluctuations as probed by dynamic light scattering is found to diverge within a small concentration range. The rod concentration where structural particle arrest occurs is well within the full chiral-nematic state, far beyond the two-phase isotropic-nematic coexistence region. The morphology of the suspensions thus consists of nematic domains with various orientations. We quantify the dynamics of the resulting texture with image-time correlation spectroscopy. Interestingly, the decay times of image correlation functions are found to diverge in a discontinuous fashion at the same concentration of charged rods where structural particle arrest is observed. At the glass-transition concentration, we thus find both structural arrest and freezing of the texture dynamics.
Collapse
Affiliation(s)
- K Kang
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-3, D-52425 Jülich, Germany
| | | |
Collapse
|
14
|
Jadrich R, Schweizer KS. Theory of kinetic arrest, elasticity, and yielding in dense binary mixtures of rods and spheres. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061503. [PMID: 23367954 DOI: 10.1103/physreve.86.061503] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 06/01/2023]
Abstract
We extend the quiescent and stressed versions of naïve mode coupling theory to treat the dynamical arrest, shear modulus, and absolute yielding of particle mixtures where one or more species is a nonrotating nonspherical object. The theory is applied in detail to dense isotropic "chemically matched" mixtures of variable aspect ratio rods and spheres that interact via repulsive and short range attractive site-site pair potentials. A remarkably rich ideal kinetic arrest behavior is predicted with up to eight "dynamical phases" emerging: an ergodic fluid, partially localized states where the spheres remain fluid but the rods can be a gel, repulsive glass or attractive glass, doubly localized glasses and gels, a porous rod gel plus sphere glass, and a narrow window where a type of rod glass and gel localization coexist. Dynamical complexity increases with rod length and the introduction of attractive forces between all species which both enhance gel network formation. Multiple dynamic reentrant features and triple points are predicted, and each dynamic phase has unique particle localization characteristics and mechanical properties. Orders of magnitude variation of the linear shear modulus and absolute yield stress are found as rod length, mixture composition and the detailed nature of interparticle attractions are varied. The interplay of total (high) mixture packing fraction and composition at fixed temperature is also briefly studied. The present work provides a foundation to study more complex rod-sphere mixtures of both biological and synthetic interest that include physical features such as interaction site size asymmetry, rod-sphere specific attractions, and/or Coulomb repulsion.
Collapse
Affiliation(s)
- Ryan Jadrich
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
15
|
Jiang T, Zukoski CF. Rheology of dense suspensions of shape anisotropic particles designed to show pH-sensitive anisotropic pair potentials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:375109. [PMID: 22913885 DOI: 10.1088/0953-8984/24/37/375109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here we investigate the flow properties of suspensions of dicolloidal particles composed of interpenetrating spheres where one sphere is rich in polystyrene and the second is rich in poly 2-vinyl pyridine. The synthesis method is designed to create both anisotropic shape and anisotropic interaction potentials that should lead to head to tail clustering. These particles are referred to as copolymer dicolloids (CDCs). The viscoelastic properties of stable and gelled suspensions of CDC particles are compared with analogs composed of homopolymer dicolloids (HDCs), having the same shape but not displaying the anisotropic attractions. After coating the particles with a nonionic surfactant to minimize van der Waals attractions, the flow properties of glassy and gelled suspensions of CDCs and HDCs are studied as a function of volume fraction, ionic strength and pH. Suspensions of HDC particles display a high kinetic arrest volume fraction (φ(g) > 0.5) over a wide range of pH and ionic strength up to [I]=0.5 M, demonstrating that the particles experience repulsive or weakly attractive pair potentials. Suspensions of CDC particles behave in a similar manner at high or low pH when [I]=0.001 M, but gel at a volume fraction of φ(g) < 0.3 and display anomalously large elastic moduli at and above the gel transition point for intermediate pH or for pH=9 when [I]=0.5 M. The gelation processes for the CDC particles are reversible by adjusting the solution pH. Interaction potential anisotropy is evident in the processes, during which the CDC particles yield on increasing oscillatory strain.
Collapse
Affiliation(s)
- Tianying Jiang
- Departments of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 60801, USA
| | | |
Collapse
|
16
|
Sussman DM, Schweizer KS. Space-time correlated two-particle hopping in glassy fluids: structural relaxation, irreversibility, decoupling, and facilitation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061504. [PMID: 23005101 DOI: 10.1103/physreve.85.061504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Indexed: 06/01/2023]
Abstract
The microscopic nonlinear Langevin equation (NLE) theory of correlated two-particle dynamics in dense fluids of spherical particles is extended to construct a predictive model of multiple correlated hopping and recaging events of a pair of tagged particles as a function of their initial separation. Modest coarse graining over the liquid structural disorder allows contact to be made with various definitions of irreversible particle motion within the context of a multistate Markov model. The correlated space-time hopping process that underlies structural relaxation can also be analyzed in the context of kinetically constrained models. The dependence of microscopically defined mean persistence and exchange times, their distributions, and relaxation-diffusion decoupling on hard-sphere fluid volume fraction is derived from a model in which irreversible jumps serve as the nucleating persistence event. For a subset of questions, the predictions of the two-particle theory are compared with results from the earlier single-particle NLE approach.
Collapse
Affiliation(s)
- Daniel M Sussman
- Department of Physics, University of Illinois, 1304 W. Green Street, Urbana, Illinois 61801, USA
| | | |
Collapse
|
17
|
Jadrich R, Schweizer KS. Percolation, phase separation, and gelation in fluids and mixtures of spheres and rods. J Chem Phys 2012; 135:234902. [PMID: 22191900 DOI: 10.1063/1.3669649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The relationship between kinetic arrest, connectivity percolation, structure and phase separation in protein, nanoparticle, and colloidal suspensions is a rich and complex problem. Using a combination of integral equation theory, connectivity percolation methods, naïve mode coupling theory, and the activated dynamics nonlinear Langevin equation approach, we study this problem for isotropic one-component fluids of spheres and variable aspect ratio rigid rods, and also percolation in rod-sphere mixtures. The key control parameters are interparticle attraction strength and its (short) spatial range, total packing fraction, and mixture composition. For spherical particles, formation of a homogeneous one-phase kinetically stable and percolated physical gel is predicted to be possible, but depends on non-universal factors. On the other hand, the dynamic crossover to activated dynamics and physical bond formation, which signals discrete cluster formation below the percolation threshold, almost always occurs in the one phase region. Rods more easily gel in the homogeneous isotropic regime, but whether a percolation or kinetic arrest boundary is reached first upon increasing interparticle attraction depends sensitively on packing fraction, rod aspect ratio and attraction range. Overall, the connectivity percolation threshold is much more sensitive to attraction range than either the kinetic arrest or phase separation boundaries. Our results appear to be qualitatively consistent with recent experiments on polymer-colloid depletion systems and brush mediated attractive nanoparticle suspensions.
Collapse
Affiliation(s)
- Ryan Jadrich
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
18
|
Zhang R, Schweizer KS. Theory of nonlinear elasticity, stress-induced relaxation, and dynamic yielding in dense fluids of hard nonspherical colloids. J Chem Phys 2012; 136:154902. [DOI: 10.1063/1.3701661] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Yang J, Schweizer KS. Glassy dynamics and mechanical response in dense fluids of soft repulsive spheres. II. Shear modulus, relaxation-elasticity connections, and rheology. J Chem Phys 2011; 134:204909. [PMID: 21639479 DOI: 10.1063/1.3592565] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We apply the quiescent and mechanically driven versions of nonlinear Langevin equation theory to study how particle softness influences the shear modulus, the connection between shear elasticity and activated relaxation, and nonlinear rheology of the repulsive Hertzian contact model of dense soft sphere fluids. Below the soft jamming threshold, the shear modulus follows a power law dependence on volume fraction over a narrow interval with an apparent exponent that grows with particle stiffness. To a first approximation, the elastic modulus and transient localization length are controlled by a single coupling constant determined by local fluid structure. In contrast to the behavior of hard spheres, an approximately linear relation between the shear modulus and activation barrier is predicted. This connection has recently been observed for microgel suspensions and provides a microscopic realization of the elastic shoving model. Yielding, shear and stress thinning of the alpha relaxation time and viscosity, and flow curves are also studied. Yield strains are relatively weakly dependent on volume fraction and particle stiffness. Shear thinning commences at values of the effective Peclet number far less than unity, a signature of stress-assisted activated relaxation when barriers are high. Apparent power law reduction of the viscosity with shear rate is predicted with a thinning exponent less than unity. In the vicinity of the soft jamming threshold, a power law flow curve occurs over an intermediate reduced shear rate range with an apparent exponent that decreases as fluid volume fraction and/or repulsion strength increase.
Collapse
Affiliation(s)
- Jian Yang
- Department of Materials Science and Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 W. Green Street, Urbana, Illinois 61801, USA
| | | |
Collapse
|
20
|
Zhang R, Schweizer KS. Kinetic arrest, dynamical transitions, and activated relaxation in dense fluids of attractive nonspherical colloids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:060502. [PMID: 21797291 DOI: 10.1103/physreve.83.060502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Indexed: 05/31/2023]
Abstract
The coupled translation-rotation activated dynamics in dense suspensions of attractive homogeneous and Janus uniaxial dicolloids are studied using microscopic statistical mechanical theory. Multiple kinetic arrest transitions and reentrant phenomena are predicted that are associated with fluid, gel, repulsive glass, attractive glass, plastic glass, and novel glass-gel states. The activated relaxation rate is a nonuniversal nonmonotonic function of attraction strength at high volume fractions due to the consequences of a change of the transient localization mechanism from caging to physical bonding.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
21
|
Choi SQ, Jang SG, Pascall AJ, Dimitriou MD, Kang T, Hawker CJ, Squires TM. Synthesis of multifunctional micrometer-sized particles with magnetic, amphiphilic, and anisotropic properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:2348-2352. [PMID: 21360773 DOI: 10.1002/adma.201003604] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/07/2011] [Indexed: 05/30/2023]
Affiliation(s)
- Siyoung Q Choi
- Department of Chemical Engineering, University of California-Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Tripathy M, Schweizer KS. Activated dynamics in dense fluids of attractive nonspherical particles. I. Kinetic crossover, dynamic free energies, and the physical nature of glasses and gels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:041406. [PMID: 21599157 DOI: 10.1103/physreve.83.041406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Indexed: 05/28/2023]
Abstract
We apply the center-of-mass versions of naïve mode coupling theory and nonlinear Langevin equation theory to study how short-range attractive interactions modify the onset of localization, activated single-particle dynamics, and the physical nature of the transiently arrested state of a variety of dense nonspherical particle fluids (and the spherical analog) as a function of volume fraction and attraction strength. The form of the dynamic crossover boundary depends on particle shape, but the reentrant glass-fluid-gel phenomenon and the repulsive glass-to-attractive glass crossover always occur. Diverse functional forms of the dynamic free energy are found for all shapes including glasslike, gel-like, a glass-gel form defined by the coexistence of two localization minima and two activation barriers, and a "mixed" attractive glass characterized by a single, very short localization length but an activation barrier located at a large displacement as in repulsive-force caged glasses. For the latter state, particle trajectories are expected to be of a two-step activated form and can be accessed at high attraction strength by increasing volume fraction, or by increasing attraction strength at fixed high enough volume fraction. A new classification scheme for slow dynamics of fluids of dense attractive particles is proposed based on specification of both the nature of the localized state and the particle displacements required to restore ergodicity via activated barrier hopping. The proposed physical picture appears to be in qualitative agreement with recent computer simulations and colloid experiments.
Collapse
Affiliation(s)
- Mukta Tripathy
- Department of Chemical and Biomolecular Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
23
|
Kramb RC, Zukoski CF. Yielding in dense suspensions: cage, bond, and rotational confinements. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:035102. [PMID: 21406857 DOI: 10.1088/0953-8984/23/3/035102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The effect of weak particle anisotropy on the onset of fluidity in dense suspensions of glasses of repulsive, weakly attractive and strongly attractive spherical and dumbbell shaped particles is explored. Yield stresses are found to scale with volume fraction showing a divergence at random close packing for all systems. However the onsets of yielding in suspensions of spherical and dumbbell shaped particles are shown to display qualitatively different behaviors. Suspensions of hard spheres exhibit a single yield stress (strain) while suspensions of spheres experiencing short range attractions in dense gels display two yielding events. Double yielding occurs when attractions between particles are only a few kT and the suspensions are sufficiently dense. For dumbbell suspensions, single yielding is observed for hard dumbbell glasses in a region where the glasses are expected to be plastic while double yielding is observed when the particles are expected to have localized centers of mass and localized orientations. Double yielding is also observed for dense dumbbell suspensions that experience attractions while only single yielding events are observed in strongly attractive gels for both dumbbells and spheres. These results are discussed in the light of recent theories and simulations of mechanisms of localization in suspensions of spherical and weakly anisotropic particles.
Collapse
Affiliation(s)
- Ryan C Kramb
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 60801, USA
| | | |
Collapse
|
24
|
Kramb RC, Zhang R, Schweizer KS, Zukoski CF. Re-entrant kinetic arrest and elasticity of concentrated suspensions of spherical and nonspherical repulsive and attractive colloids. J Chem Phys 2011; 134:014503. [DOI: 10.1063/1.3509393] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Yunker PJ, Chen K, Zhang Z, Ellenbroek WG, Liu AJ, Yodh AG. Rotational and translational phonon modes in glasses composed of ellipsoidal particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:011403. [PMID: 21405694 DOI: 10.1103/physreve.83.011403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/01/2010] [Indexed: 05/30/2023]
Abstract
The effects of particle shape on the vibrational properties of colloidal glasses are studied experimentally. "Ellipsoidal glasses" are created by stretching polystyrene spheres to different aspect ratios and then suspending the resulting ellipsoidal particles in water at a high packing fraction. By measuring displacement correlations between particles, we extract vibrational properties of the corresponding "shadow" ellipsoidal glass with the same geometric configuration and interactions as the "source" suspension but without damping. Low-frequency modes in glasses composed of ellipsoidal particles with major-to-minor axis aspect ratios of ~1.1 are observed to have predominantly rotational character. In contrast, low-frequency modes in glasses of ellipsoidal particles with larger aspect ratios (~3.0) exhibit a mixed rotational and translational character. All glass samples were characterized by a distribution of particles with different aspect ratios. Interestingly, even within the same sample it was found that small-aspect-ratio particles participate relatively more in rotational modes, while large-aspect-ratio particles tend to participate relatively more in translational modes.
Collapse
Affiliation(s)
- Peter J Yunker
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
26
|
Zhang R, Schweizer KS. Dynamic free energies, cage escape trajectories, and glassy relaxation in dense fluids of uniaxial hard particles. J Chem Phys 2010; 133:104902. [DOI: 10.1063/1.3483601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|