1
|
Allum F, McManus J, Denby O, Burt M, Brouard M. Photoionization and Photofragmentation Dynamics of I 2 in Intense Laser Fields: A Velocity-Map Imaging Study. J Phys Chem A 2022; 126:8577-8587. [PMID: 36351075 PMCID: PMC9706571 DOI: 10.1021/acs.jpca.2c04379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/21/2022] [Indexed: 11/10/2022]
Abstract
The photoionization and photofragmentation dynamics of I2 in intense femtosecond near-infrared laser fields were studied using velocity-map imaging of cations, electrons, and anions. A series of photofragmentation pathways originating from different cationic electronic states were observed following single ionization, leading to I+ fragments with distinct kinetic energies, which could not be resolved in previous studies. Photoelectron spectra indicate that these high-lying dissociative states are primarily produced through nonresonant ionization from several molecular orbitals (MO) of the neutral. The photoelectron spectra also show clear signatures of resonant ionization pathways (Freeman resonances) to low-lying bound ionic states via Rydberg states of the neutral moiety. To investigate the role of these Rydberg states further, we imaged anionic products (I-) formed through ion-pair dissociations of neutral molecules excited to these Rydberg states by the intense femtosecond laser pulse. Collectively, these results shed significant new light on the complex dynamics of I2 molecules in intense laser fields and on the important role of neutral Rydberg states in a full description of strong-field phenomena in molecules.
Collapse
Affiliation(s)
| | - Joseph McManus
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Oskar Denby
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Michael Burt
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Mark Brouard
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
2
|
Cheng C, Singh V, Matsika S, Weinacht T. Strong Field Double Ionization of Formaldehyde Investigated Using Momentum Resolved Covariance Imaging and Trajectory Surface Hopping. J Phys Chem A 2022; 126:7399-7406. [PMID: 36178987 DOI: 10.1021/acs.jpca.2c04650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We use covariance velocity map imaging of fragment ions from the strong field double ionization of formaldehyde in conjunction with trajectory surface hopping calculations to determine the ionization yields to different singlet and triplet states of the dication. The calculated kinetic energy release for trajectories initiated on different electronic states is compared with the experimental values based on momentum resolved covariance measurements. We determine the state resolved double ionization yields as a function of laser intensity and pulse duration down to 6 fs (two optical cycles).
Collapse
Affiliation(s)
- Chuan Cheng
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York11794-3800, United States
| | - Vaibhav Singh
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York11794-3800, United States
| |
Collapse
|
3
|
Allum F, Cheng C, Howard AJ, Bucksbaum PH, Brouard M, Weinacht T, Forbes R. Multi-Particle Three-Dimensional Covariance Imaging: "Coincidence" Insights into the Many-Body Fragmentation of Strong-Field Ionized D 2O. J Phys Chem Lett 2021; 12:8302-8308. [PMID: 34428066 DOI: 10.1021/acs.jpclett.1c02481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We demonstrate the applicability of covariance analysis to three-dimensional velocity-map imaging experiments using a fast time stamping detector. Studying the photofragmentation of strong-field doubly ionized D2O molecules, we show that combining high count rate measurements with covariance analysis yields the same level of information typically limited to the "gold standard" of true, low count rate coincidence experiments, when averaging over a large ensemble of photofragmentation events. This increases the effective data acquisition rate by approximately 2 orders of magnitude, enabling a new class of experimental studies. This is illustrated through an investigation into the dependence of three-body D2O2+ dissociation on the intensity of the ionizing laser, revealing mechanistic insights into the nuclear dynamics driven during the laser pulse. The experimental methodology laid out, with its drastic reduction in acquisition time, is expected to be of great benefit to future photofragment imaging studies.
Collapse
Affiliation(s)
- Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Chuan Cheng
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Andrew J Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Thomas Weinacht
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ruaridh Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
4
|
Bircher MP, Liberatore E, Browning NJ, Brickel S, Hofmann C, Patoz A, Unke OT, Zimmermann T, Chergui M, Hamm P, Keller U, Meuwly M, Woerner HJ, Vaníček J, Rothlisberger U. Nonadiabatic effects in electronic and nuclear dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061510. [PMID: 29376108 PMCID: PMC5760266 DOI: 10.1063/1.4996816] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/19/2017] [Indexed: 05/25/2023]
Abstract
Due to their very nature, ultrafast phenomena are often accompanied by the occurrence of nonadiabatic effects. From a theoretical perspective, the treatment of nonadiabatic processes makes it necessary to go beyond the (quasi) static picture provided by the time-independent Schrödinger equation within the Born-Oppenheimer approximation and to find ways to tackle instead the full time-dependent electronic and nuclear quantum problem. In this review, we give an overview of different nonadiabatic processes that manifest themselves in electronic and nuclear dynamics ranging from the nonadiabatic phenomena taking place during tunnel ionization of atoms in strong laser fields to the radiationless relaxation through conical intersections and the nonadiabatic coupling of vibrational modes and discuss the computational approaches that have been developed to describe such phenomena. These methods range from the full solution of the combined nuclear-electronic quantum problem to a hierarchy of semiclassical approaches and even purely classical frameworks. The power of these simulation tools is illustrated by representative applications and the direct confrontation with experimental measurements performed in the National Centre of Competence for Molecular Ultrafast Science and Technology.
Collapse
Affiliation(s)
- Martin P Bircher
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Elisa Liberatore
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nicholas J Browning
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | - Aurélien Patoz
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Oliver T Unke
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Tomáš Zimmermann
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zürich, Switzerland
| | - Ursula Keller
- Physics Department, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Hans-Jakob Woerner
- Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Zhang CP, Xia CL, Jia XF, Miao XY. Monitoring the electron dynamics of the excited state via higher-order spectral minimum. Sci Rep 2017; 7:10359. [PMID: 28871111 PMCID: PMC5583248 DOI: 10.1038/s41598-017-10667-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/11/2017] [Indexed: 11/10/2022] Open
Abstract
A pump-probe scheme for monitoring the electron dynamics of the excited state has been investigated by numerically solving the two-state time-dependent Schrödinger equation based on the non-Born-Oppenheimer approximation. By adjusting the delay time between a mid-infrared probe pulse and an ultra violet pump pulse, an obvious minimum can be seen in the higher-order harmonic region. With electron probability density distribution, ionization rate and classical simulation, the minimum can be ascribed to the electron localization around one nucleus at larger delay time and represents the electron dynamics of the excited state at the time of ionization. Moreover, the position of the minimum is much more sensitive to the nuclear motion.
Collapse
Affiliation(s)
- Cai-Ping Zhang
- College of Physics and Information Engineering, Shanxi Normal University, Linfen, 041004, China.,College of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004, China
| | - Chang-Long Xia
- College of Physics and Information Engineering, Shanxi Normal University, Linfen, 041004, China
| | - Xiang-Fu Jia
- College of Physics and Information Engineering, Shanxi Normal University, Linfen, 041004, China.
| | - Xiang-Yang Miao
- College of Physics and Information Engineering, Shanxi Normal University, Linfen, 041004, China.
| |
Collapse
|
6
|
Svoboda V, Ram NB, Rajeev R, Wörner HJ. Time-resolved photoelectron imaging with a femtosecond vacuum-ultraviolet light source: Dynamics in the A∼/B∼- and F∼-bands of SO 2. J Chem Phys 2017; 146:084301. [PMID: 28249458 DOI: 10.1063/1.4976552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Time-resolved photoelectron imaging is demonstrated using the third harmonic of a 400-nm femtosecond laser pulse as the ionization source. The resulting 133-nm pulses are combined with 266-nm pulses to study the excited-state dynamics in the A∼/B∼- and F∼-band regions of SO2. The photoelectron signal from the molecules excited to the A∼/B∼-band does not decay for at least several picoseconds, reflecting the population of bound states. The temporal variation of the photoelectron angular distribution (PAD) reflects the creation of a rotational wave packet in the excited state. In contrast, the photoelectron signal from molecules excited to the F∼-band decays with a time constant of 80 fs. This time constant is attributed to the motion of the excited-state wave packet out of the ionization window. The observed time-dependent PADs are consistent with the F∼ band corresponding to a Rydberg state of dominant s character. These results establish low-order harmonic generation as a promising tool for time-resolved photoelectron imaging of the excited-state dynamics of molecules, simultaneously giving access to low-lying electronic states, as well as Rydberg states, and avoiding the ionization of unexcited molecules.
Collapse
Affiliation(s)
- Vít Svoboda
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Niraghatam Bhargava Ram
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Rajendran Rajeev
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Hans Jakob Wörner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| |
Collapse
|
7
|
Bruner BD, Mašín Z, Negro M, Morales F, Brambila D, Devetta M, Faccialà D, Harvey AG, Ivanov M, Mairesse Y, Patchkovskii S, Serbinenko V, Soifer H, Stagira S, Vozzi C, Dudovich N, Smirnova O. Multidimensional high harmonic spectroscopy of polyatomic molecules: detecting sub-cycle laser-driven hole dynamics upon ionization in strong mid-IR laser fields. Faraday Discuss 2016; 194:369-405. [DOI: 10.1039/c6fd00130k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High harmonic generation (HHG) spectroscopy has opened up a new frontier in ultrafast science, where electronic dynamics can be measured on an attosecond time scale. The strong laser field that triggers the high harmonic response also opens multiple quantum pathways for multielectron dynamics in molecules, resulting in a complex process of multielectron rearrangement during ionization. Using combined experimental and theoretical approaches, we show how multi-dimensional HHG spectroscopy can be used to detect and follow electronic dynamics of core rearrangement on sub-laser cycle time scales. We detect the signatures of laser-driven hole dynamics upon ionization and reconstruct the relative phases and amplitudes for relevant ionization channels in a CO2 molecule on a sub-cycle time scale. Reconstruction of channel-resolved complex ionization amplitudes on attosecond time scales has been a long-standing goal of high harmonic spectroscopy. Our study brings us one step closer to fulfilling this initial promise and developing robust schemes for sub-femtosecond imaging of multielectron rearrangement in complex molecular systems.
Collapse
|
8
|
Tehlar A, Wörner HJ. Time-resolved high-harmonic spectroscopy of the photodissociation of CH3I and CF3I. Mol Phys 2013. [DOI: 10.1080/00268976.2013.782439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- A. Tehlar
- Laboratorium für Physikalische Chemie, , ETH Zürich, Switzerland
| | - H. J. Wörner
- Laboratorium für Physikalische Chemie, , ETH Zürich, Switzerland
| |
Collapse
|
9
|
|
10
|
Fang L, Osipov T, Murphy B, Tarantelli F, Kukk E, Cryan JP, Glownia M, Bucksbaum PH, Coffee RN, Chen M, Buth C, Berrah N. Multiphoton ionization as a clock to reveal molecular dynamics with intense short x-ray free electron laser pulses. PHYSICAL REVIEW LETTERS 2012; 109:263001. [PMID: 23368555 DOI: 10.1103/physrevlett.109.263001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Indexed: 05/23/2023]
Abstract
We investigate molecular dynamics of multiple ionization in N2 through multiple core-level photoabsorption and subsequent Auger decay processes induced by intense, short x-ray free electron laser pulses. The timing dynamics of the photoabsorption and dissociation processes is mapped onto the kinetic energy of the fragments. Measurements of the latter allow us to map out the average internuclear separation for every molecular photoionization sequence step and obtain the average time interval between the photoabsorption events. Using multiphoton ionization as a tool of the multiple-pulse pump-probe scheme, we demonstrate the modification of the ionization dynamics as we vary the x-ray laser pulse duration.
Collapse
Affiliation(s)
- L Fang
- Physics Department, Western Michigan University, Kalamazoo, Michigan 49008, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Le AT, Morishita T, Lucchese RR, Lin CD. Theory of high harmonic generation for probing time-resolved large-amplitude molecular vibrations with ultrashort intense lasers. PHYSICAL REVIEW LETTERS 2012; 109:203004. [PMID: 23215483 DOI: 10.1103/physrevlett.109.203004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Indexed: 06/01/2023]
Abstract
We present a theory that incorporates the vibrational degrees of freedom in a high-order harmonic generation (HHG) process with ultrashort intense laser pulses. In this model, laser-induced time-dependent transition dipoles for each fixed molecular geometry are added coherently, weighted by the laser-driven time-dependent nuclear wave packet distribution. We show that the nuclear distribution can be strongly modified by the HHG driving laser. The validity of this model is first checked against results from the numerical solution of the time-dependent Schrödinger equation for a simple model system. We show that in combination with the established quantitative rescattering theory this model is able to reproduce the time-resolved pump-probe HHG spectra of N(2)O(4) reported by Li et al. [Science 322, 1207 (2008)].
Collapse
Affiliation(s)
- Anh-Thu Le
- Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
12
|
Bertrand JB, Wörner HJ, Hockett P, Villeneuve DM, Corkum PB. Revealing the Cooper minimum of N2 by molecular frame high-harmonic spectroscopy. PHYSICAL REVIEW LETTERS 2012; 109:143001. [PMID: 23083239 DOI: 10.1103/physrevlett.109.143001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Indexed: 06/01/2023]
Abstract
Molecular frame high-harmonic spectra of aligned N2 molecules reveal a Cooper-like minimum. By deconvolving the laboratory frame alignment distribution, what was previously thought to be a maximum of emission along the molecular axis is found to be maxima at 35 degrees off axis, with a spectral minimum on axis. Both of these features are supported by photoionization calculations that underline the relationship between high-harmonic spectroscopy and photoionization measurements. The calculations reveal that the on axis spectral minimum is a Cooper-like minimum that arises from the destructive interference of the p and f partial wave contributions to high-harmonic photorecombination. Features such as Cooper minima and shape resonances are ubiquitous in molecular photoionization or recombination.
Collapse
Affiliation(s)
- J B Bertrand
- Joint Attosecond Science Laboratory, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, K1A 0R6, Canada
| | | | | | | | | |
Collapse
|
13
|
Rupenyan A, Bertrand JB, Villeneuve DM, Wörner HJ. All-optical measurement of high-harmonic amplitudes and phases in aligned molecules. PHYSICAL REVIEW LETTERS 2012; 108:033903. [PMID: 22400743 DOI: 10.1103/physrevlett.108.033903] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Indexed: 05/12/2023]
Abstract
We report a new all-optical approach to measuring the phase and amplitude of high-harmonic emission from aligned molecules. We combine the transient grating technique with a continuous rotation of the molecular alignment axis and develop an analytical model that enables the simultaneous determination of phases and amplitudes. Measurements in N(2) molecules are shown to be in qualitative agreement with the results of ab initio quantum scattering calculations.
Collapse
Affiliation(s)
- A Rupenyan
- Laboratorium für Physikalische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
14
|
Wörner HJ, Bertrand JB, Fabre B, Higuet J, Ruf H, Dubrouil A, Patchkovskii S, Spanner M, Mairesse Y, Blanchet V, Mével E, Constant E, Corkum PB, Villeneuve DM. Conical Intersection Dynamics in NO
2
Probed by Homodyne High-Harmonic Spectroscopy. Science 2011; 334:208-12. [DOI: 10.1126/science.1208664] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- H. J. Wörner
- Joint Laboratory for Attosecond Science, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
- Laboratorium für Physikalische Chemie, Eidgenössische Technische Hochschule Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - J. B. Bertrand
- Joint Laboratory for Attosecond Science, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - B. Fabre
- Centre Lasers Intenses et Applications, Université de Bordeaux, CEA, CNRS, UMR5107, 351 Cours de la Libération, 33405 Talence, France
| | - J. Higuet
- Centre Lasers Intenses et Applications, Université de Bordeaux, CEA, CNRS, UMR5107, 351 Cours de la Libération, 33405 Talence, France
| | - H. Ruf
- Centre Lasers Intenses et Applications, Université de Bordeaux, CEA, CNRS, UMR5107, 351 Cours de la Libération, 33405 Talence, France
| | - A. Dubrouil
- Centre Lasers Intenses et Applications, Université de Bordeaux, CEA, CNRS, UMR5107, 351 Cours de la Libération, 33405 Talence, France
| | - S. Patchkovskii
- Joint Laboratory for Attosecond Science, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - M. Spanner
- Joint Laboratory for Attosecond Science, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Y. Mairesse
- Centre Lasers Intenses et Applications, Université de Bordeaux, CEA, CNRS, UMR5107, 351 Cours de la Libération, 33405 Talence, France
| | - V. Blanchet
- Laboratoire Collisions Agrégats Réactivité (IRSAMC), UPS, Université de Toulouse, F-31062 Toulouse, France and CNRS, UMR 5589, F-31062 Toulouse, France
| | - E. Mével
- Centre Lasers Intenses et Applications, Université de Bordeaux, CEA, CNRS, UMR5107, 351 Cours de la Libération, 33405 Talence, France
| | - E. Constant
- Centre Lasers Intenses et Applications, Université de Bordeaux, CEA, CNRS, UMR5107, 351 Cours de la Libération, 33405 Talence, France
| | - P. B. Corkum
- Joint Laboratory for Attosecond Science, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - D. M. Villeneuve
- Joint Laboratory for Attosecond Science, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| |
Collapse
|