1
|
Asta AJ, Palaia I, Trizac E, Levesque M, Rotenberg B. Lattice Boltzmann electrokinetics simulation of nanocapacitors. J Chem Phys 2019; 151:114104. [DOI: 10.1063/1.5119341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Adelchi J. Asta
- Sorbonne Universités, CNRS, Physico-Chimie des électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | - Ivan Palaia
- LPTMS, UMR 8626, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Emmanuel Trizac
- LPTMS, UMR 8626, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Maximilien Levesque
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Universités, CNRS, Physico-Chimie des électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Amiens, France
| |
Collapse
|
2
|
Conformation and Dynamics of Long-Chain End-Tethered Polymers in Microchannels. Polymers (Basel) 2019; 11:polym11030488. [PMID: 30960472 PMCID: PMC6473708 DOI: 10.3390/polym11030488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Polyelectrolytes constitute an important group of materials, used for such different purposes as the stabilization of emulsions and suspensions or oil recovery. They are also studied and utilized in the field of microfluidics. With respect to the latter, a part of the interest in polyelectrolytes inside microchannels stems from genetic analysis, considering that deoxyribonucleic acid (DNA) molecules are polyelectrolytes. This review summarizes the single-molecule experimental and molecular dynamics simulation-based studies of end-tethered polyelectrolytes, especially addressing their relaxation dynamics and deformation characteristics under various external forces in micro-confined environments. In most of these studies, DNA is considered as a model polyelectrolyte. Apart from summarizing the results obtained in that area, the most important experimental and simulation techniques are explained.
Collapse
|
3
|
Sean D, Landsgesell J, Holm C. Influence of weak groups on polyelectrolyte mobilities. Electrophoresis 2019; 40:799-809. [PMID: 30645004 DOI: 10.1002/elps.201800346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 11/08/2022]
Abstract
The ionization of dissociable groups in weak polyelectrolytes does not occur in a homogenous fashion. Monomer connectivity imposes constraints on the localization of the dissociated (charged) monomers that affect the local electric potential. As a result, the mean bare charge along a weak polyelectrolyte can vary depending on the proximity to topological features (e.g. presence of crosslinks or dangling ends). Using reaction-ensemble Monte-Carlo simulations we calculate the dissociation inhomogeneities for a few selected PE configurations, linear, rod-like, flexible four-arm star, and a star with stiff arms. An ensemble preaverage is used to obtain the annealed bare charge profile for these different polymer configurations. Using molecular dynamics simulations within a Lattice-Boltzman fluid, we investigate how the electrophoretic mobility is affected by the bare charge inhomogeneities arising from the annealed weak polyelectrolytes. Surprisingly, the mobility obtained for the situations corresponding to the predicted charge profile for annealed weak polyelectrolytes are not significantly different than the mobility obtained when all the monomers have an identical charge (under the constraint that the total polyelectrolyte bare charge is the same). This is also true for the stiff rod-like variants where conformational changes induced from the localization of the monomer charges are negligible. In salty solutions, we find that counterions are affected by the electric potential modulations induced by the topological features. Since the counterions crowd in regions where the electric potential caused by the dissociated monomers is highest, they wash-out the bare charge inhomogeneities and contribute to a more uniform effective backbone charge.
Collapse
Affiliation(s)
- David Sean
- Institute for Computational Physics, Universität Stuttgart, Stuttgart, Germany
| | - Jonas Landsgesell
- Institute for Computational Physics, Universität Stuttgart, Stuttgart, Germany
| | - Christian Holm
- Institute for Computational Physics, Universität Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Sean D, Landsgesell J, Holm C. Computer Simulations of Static and Dynamical Properties of Weak Polyelectrolyte Nanogels in Salty Solutions. Gels 2017; 4:E2. [PMID: 30674778 PMCID: PMC6318681 DOI: 10.3390/gels4010002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 12/02/2022] Open
Abstract
We investigate the chemical equilibria of weak polyelectrolyte nanogels with reaction ensemble Monte Carlo simulations. With this method, the chemical identity of the nanogel monomers can change between neutral or charged following the acid-base equilibrium reaction HA ⇌ A- + H⁺. We investigate the effect of changing the chemical equilibria by modifying the dissociation constant K a . These simulations allow for the extraction of static properties like swelling equilibria and the way in which charge-both monomer and ionic-is distributed inside the nanogel. Our findings reveal that, depending on the value of K a , added salt can either increase or decrease the gel size. Using the calculated mean-charge configurations of the nanogel from the reaction ensemble simulation as a quenched input to coupled lattice-Boltzmann molecular dynamics simulations, we investigate dynamical nanogel properties such as the electrophoretic mobility μ and the diffusion coefficient D.
Collapse
Affiliation(s)
- David Sean
- Institute for computational physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Jonas Landsgesell
- Institute for computational physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Christian Holm
- Institute for computational physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| |
Collapse
|
5
|
Roy T, Szuttor K, Smiatek J, Holm C, Hardt S. Electric-field-induced stretching of surface-tethered polyelectrolytes in a microchannel. Phys Rev E 2017; 96:032503. [PMID: 29346871 DOI: 10.1103/physreve.96.032503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Indexed: 06/07/2023]
Abstract
We study the stretching of a surface-tethered polyelectrolyte confined between parallel surfaces under the application of a dc electric field. We explore the influence of the electric-field strength, the length of the polyelectrolyte, and the degree of confinement on the conformation of the polyelectrolyte by single-molecule experiments and coarse-grained coupled lattice-Boltzmann molecular-dynamics simulations. The fractional extension of the polyelectrolyte is found to be a universal function of the product of the applied electric field and the molecular contour length, which is explained by simple scaling arguments. The degree of confinement does not have any significant influence on the stretching. We also confirm that an electrohydrodynamic equivalence principle relating the stretching in an electric field to that in a flow field is applicable.
Collapse
Affiliation(s)
- Tamal Roy
- Institute for Nano- and Microfluidics, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Kai Szuttor
- Institut für Computerphysik, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Jens Smiatek
- Institut für Computerphysik, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Christian Holm
- Institut für Computerphysik, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Steffen Hardt
- Institute for Nano- and Microfluidics, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
6
|
Szuttor K, Roy T, Hardt S, Holm C, Smiatek J. The stretching force on a tethered polymer in pressure-driven flow. J Chem Phys 2017; 147:034902. [DOI: 10.1063/1.4993619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kai Szuttor
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| | - Tamal Roy
- Institute for Nano- and Microfluidics, Technische Universität Darmstadt, Alarich-Weiss-Strasse 10, D-64287 Darmstadt, Germany
| | - Steffen Hardt
- Institute for Nano- and Microfluidics, Technische Universität Darmstadt, Alarich-Weiss-Strasse 10, D-64287 Darmstadt, Germany
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| |
Collapse
|
7
|
Weik F, Kesselheim S, Holm C. A coarse-grained DNA model for the prediction of current signals in DNA translocation experiments. J Chem Phys 2017; 145:194106. [PMID: 27875892 DOI: 10.1063/1.4967458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an implicit solvent coarse-grained double-stranded DNA (dsDNA) model confined to an infinite cylindrical pore that reproduces the experimentally observed current modulations of a KaCl solution at various concentrations. Our model extends previous coarse-grained and mean-field approaches by incorporating a position dependent friction term on the ions, which Kesselheim et al. [Phys. Rev. Lett. 112, 018101 (2014)] identified as an essential ingredient to correctly reproduce the experimental data of Smeets et al. [Nano Lett. 6, 89 (2006)]. Our approach reduces the computational effort by orders of magnitude compared with all-atom simulations and serves as a promising starting point for modeling the entire translocation process of dsDNA. We achieve a consistent description of the system's electrokinetics by using explicitly parameterized ions, a friction term between the DNA beads and the ions, and a lattice-Boltzmann model for the solvent.
Collapse
Affiliation(s)
- Florian Weik
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| | - Stefan Kesselheim
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| | - Christian Holm
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| |
Collapse
|
8
|
Zhai S, Zhao H. Influence of concentration polarization on DNA translocation through a nanopore. Phys Rev E 2016; 93:052409. [PMID: 27300926 PMCID: PMC4910644 DOI: 10.1103/physreve.93.052409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/07/2022]
Abstract
Concentration polarization can be induced by the unique ion-perm selectivity of small nanopores, leading to a salt concentration gradient across nanopores. This concentration gradient can create diffusio-osmosis and induce an electric field, affecting ionic currents on DNA that translocates through a nanopore. Here this influence is theoretically investigated by solving the continuum Poisson-Nernst-Planck model for different salt concentrations, DNA surface charge densities, and pore properties. By implementing the perturbation method, we can explicitly compute the contribution of concentration polarization to the ionic current. The induced electric field by concentration polarization is opposite to the imposed electric field and decreases the migration current, and the induced diffusio-osmosis can decrease the convection current as well. Our studies suggest that the importance of the concentration polarization can be determined by the parameter λ/G where λ is the double-layer thickness and G is the gap size. When λ/G is larger than a critical value, the influence of concentration polarization becomes more prominent. This conclusion is supported by the studies on the dependence of the ionic current on salt concentration and pore properties, showing that the difference between two models with and without accounting for concentration polarization is larger for low salts and small pores, which correspond to larger λ/G.
Collapse
Affiliation(s)
- Shengjie Zhai
- Department of Mechanical Engineering, University of Nevada, Las Vegas, NV, 89154
| | - Hui Zhao
- Department of Mechanical Engineering, University of Nevada, Las Vegas, NV, 89154
| |
Collapse
|
9
|
Zhou J, Schmid F. Computer simulations of single particles in external electric fields. SOFT MATTER 2015; 11:6728-6739. [PMID: 26238433 DOI: 10.1039/c5sm01485a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Applying electric fields is an attractive way to control and manipulate single particles or molecules, e.g., in lab-on-a-chip devices. However, the response of nanosize objects in electrolyte solution to external fields is far from trivial. It is the result of a variety of dynamical processes taking place in the ion cloud surrounding charged particles and in the bulk electrolyte, and it is governed by an intricate interplay of electrostatic and hydrodynamic interactions. Already systems composed of one single particle in electrolyte solution exhibit a complex dynamical behaviour. In this review, we discuss recent coarse-grained simulations that have been performed to obtain a molecular-level understanding of the dynamic and dielectric response of single particles and single macromolecules to external electric fields. We address both the response of charged particles to constant fields (DC fields), which can be characterized by an electrophoretic mobility, and the dielectric response of both uncharged and charged particles to alternating fields (AC fields), which is described by a complex polarizability. Furthermore, we give a brief survey of simulation algorithms and highlight some recent developments.
Collapse
Affiliation(s)
- Jiajia Zhou
- School of Chemistry & Enviroment, Center of Soft Matter Physics and its Application, Beihang University, Xueyuan Road 37, Beijing 100191, China.
| | | |
Collapse
|
10
|
Raafatnia S, Hickey OA, Holm C. Electrophoresis of a Spherical Polyelectrolyte-Grafted Colloid in Monovalent Salt Solutions: Comparison of Molecular Dynamics Simulations with Theory and Numerical Calculations. Macromolecules 2015. [DOI: 10.1021/ma502238z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shervin Raafatnia
- Institute
for Computational
Physics, Stuttgart University, Allmandring 3, D-70569, Stuttgart, Germany
| | - Owen A. Hickey
- Institute
for Computational
Physics, Stuttgart University, Allmandring 3, D-70569, Stuttgart, Germany
| | - Christian Holm
- Institute
for Computational
Physics, Stuttgart University, Allmandring 3, D-70569, Stuttgart, Germany
| |
Collapse
|
11
|
Medina S, Zhou J, Wang ZG, Schmid F. An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions. J Chem Phys 2015; 142:024103. [DOI: 10.1063/1.4905102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Chubynsky MV, Slater GW. Theory of end-labeled free-solution electrophoresis: is the end effect important? Electrophoresis 2014; 35:596-604. [PMID: 24375057 DOI: 10.1002/elps.201300419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/24/2013] [Accepted: 11/29/2013] [Indexed: 11/12/2022]
Abstract
In the theory of free-solution electrophoresis of a polyelectrolyte (such as the DNA) conjugated with a "drag-tag," the conjugate is divided into segments of equal hydrodynamic friction and its electrophoretic mobility is calculated as a weighted average of the mobilities of individual segments. If all the weights are assumed equal, then for an electrically neutral drag-tag, the elution time t is predicted to depend linearly on the inverse DNA length 1/M. While it is well-known that the equal-weights assumption is approximate and in reality the weights increase toward the ends, this "end effect" has been assumed to be small, since in experiments the t(1/M) dependence seems to be nearly perfectly linear. We challenge this assumption pointing out that some experimental linear fits do not extrapolate to the free (i.e. untagged) DNA elution time in the limit 1/M→0, indicating nonlinearity outside the fitting range. We show that a theory for a flexible polymer taking the end effect into account produces a nonlinear curve that, however, can be fitted with a straight line over a limited range of 1/M typical of experiments, but with a "wrong" intercept, which explains the experimental results without additional assumptions. We also study the influence of the flexibilities of the charged and neutral parts.
Collapse
|
13
|
Hickey OA, Holm C. Electrophoretic mobility reversal of polyampholytes induced by strong electric fields or confinement. J Chem Phys 2013; 138:194905. [PMID: 23697439 DOI: 10.1063/1.4804620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the mobility of polyampholytes consisting of both negatively and positively charged sections. The simulations are carried out using molecular dynamics simulations with electrohydrodynamical effects taken into account via a simple coupling scheme to a lattice-Boltzmann fluid. Our results show a previously predicted mobility reversal of the polyampholytes as the applied electric field is increased due to stretching of the polyampholytes. Further, we show that a similar mobility reversal can be induced due to confinement between parallel plates. At high electric field strengths, the polyampholytes' electrophoretic mobility is a non-monotonic function of the distance between the plates. These results help to clarify the role of deformation and confinement on the electrophoretic mobility of polyampholytes.
Collapse
Affiliation(s)
- Owen A Hickey
- Institute for Computational Physics, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | | |
Collapse
|
14
|
|
15
|
Cao Q, Zuo C, Li L, Li Y, Yang Y. Translocation of nanoparticles through a polymer brush-modified nanochannel. BIOMICROFLUIDICS 2012; 6:34101. [PMID: 23853678 PMCID: PMC3407119 DOI: 10.1063/1.4732799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/16/2012] [Indexed: 06/02/2023]
Abstract
A basic understanding of the transport mechanisms of nanostructures in a polymer brush-modified nanochannel as well as the brush-nanostructure interactions at molecular level is important to design and fabricate emerging smart nano/microfluidic channels. In this work, we report coarse-grained molecular dynamics simulations of the translocation of nanoparticles through a cylindrical nanochannel coated with the polymer brush. The effects of the interparticle interaction and grafting density on the distribution and electrokinetic transport of nanoparticles are addressed in detail. Analysis of the distribution and velocity profiles of nanoparticles from the simulations indicate that the location of nanoparticles along the radial direction and their migration velocity are very sensitive to the change of interparticle interaction. We find complicated transport dynamics of nanoparticles under the influence of various grafting densities. The nanoparticles show markedly different translocation behavior upon increasing the grafting density, which depends on the counterion distribution, free room within the brush, nanoparticle-polymer friction, and brush configuration. Our results may serve as a useful starting point for the transport of nanostructures in polymer-modified channels and help to guide the design of novel smart nanofluidic channels for controlling the migration behavior of nanostructures.
Collapse
Affiliation(s)
- Qianqian Cao
- College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
| | | | | | | | | |
Collapse
|
16
|
Hickey OA, Shendruk TN, Harden JL, Slater GW. Simulations of free-solution electrophoresis of polyelectrolytes with a finite Debye length using the Debye-Hückel approximation. PHYSICAL REVIEW LETTERS 2012; 109:098302. [PMID: 23002891 DOI: 10.1103/physrevlett.109.098302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 07/04/2012] [Indexed: 06/01/2023]
Abstract
We introduce a mesoscale simulation method based on multiparticle collision dynamics (MPCD) for the electrohydrodynamics of polyelectrolytes with finite Debye lengths. By applying the Debye-Hückel approximation to assign an effective charge to MPCD particles near charged monomers, our simulations are able to reproduce the rapid rise in the electrophoretic mobility with respect to the degree of polymerization for the shortest polymer lengths followed by a small decrease for longer polymers due to charge condensation. Moreover, these simulations demonstrate the importance of a finite Debye length in accurately determining the mobility of uniformly charged polyelectrolytes and net neutral polyampholytes.
Collapse
Affiliation(s)
- Owen A Hickey
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
17
|
Cao Q, Zuo C, Li L, Zhang Y. Electrophoresis of Bottle-Brush Polyelectrolytes in an Attractive Nanochannel. MACROMOL THEOR SIMUL 2012. [DOI: 10.1002/mats.201100121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Shendruk T, Hickey O, Slater G, Harden J. Electrophoresis: When hydrodynamics matter. Curr Opin Colloid Interface Sci 2012. [DOI: 10.1016/j.cocis.2011.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Hickey OA, Holm C, Harden JL, Slater GW. Influence of Charged Polymer Coatings on Electro-Osmotic Flow: Molecular Dynamics Simulations. Macromolecules 2011. [DOI: 10.1021/ma201995q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Owen A. Hickey
- Institute for Computational Physics, Universität Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Christian Holm
- Institute for Computational Physics, Universität Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
| | - James L. Harden
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Gary W. Slater
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|