1
|
Ryazanov VV. Application of boundary functionals of random processes in statistical physics. Phys Rev E 2025; 111:024115. [PMID: 40103094 DOI: 10.1103/physreve.111.024115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/15/2025] [Indexed: 03/20/2025]
Abstract
The potential applications of boundary functionals of random processes, such as the extreme values of these processes, the moment of first reaching a fixed level, the value of the process at the moment of reaching the level, the moment of reaching extreme values, the time the process stays above a fixed level, and other functionals, are considered for the description of physical, chemical, and biological problems. Definitions of these functionals are provided, and characteristic functions are presented for the model with an exponential distribution of incoming demands. A generalization of these limitations is also considered. The potential uses of boundary functionals are demonstrated through examples such as a unicyclic network with affinity A, an asymmetric random walk, nonlinear diffusion, two-level model, Brownian motion, and multiple diffusing particles with reversible target-binding kinetics.
Collapse
Affiliation(s)
- V V Ryazanov
- Institute for Nuclear Research, pr. Nauki, 47 Kiev, Ukraine
| |
Collapse
|
2
|
Go BG, Yi J, Kim YW. Random search for a partially reactive target by multiple diffusive searchers. Phys Rev E 2025; 111:014124. [PMID: 39972856 DOI: 10.1103/physreve.111.014124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/02/2024] [Indexed: 02/21/2025]
Abstract
We study the first-passage problem for a partially reactive target by N identical diffusive particles in a finite d-dimensional space, laying a focus on the effects of the partial reactivity when searchers are initially excluded from the target region. By solving the Fokker-Planck equation, we obtain the mean first-passage time that exhibits a power-law dependence on the number of searchers as τ_{N}∼N^{-α}, proving that the exponent α varies with dimensionality, reactivity, and the number of searchers, and specifying conditions in which crossovers between different exponents occur. We confirm the validity of our analytic results by performing Langevin dynamics simulations for various sets of system parameters.
Collapse
Affiliation(s)
- Byeong Guk Go
- Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon 34141, Korea
| | - Juyeon Yi
- Pusan National University, Department of Physics, Busan 46241, Korea
| | - Yong Woon Kim
- Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon 34141, Korea
| |
Collapse
|
3
|
Grebenkov DS. Adsorption and Permeation Events in Molecular Diffusion. Molecules 2024; 29:5012. [PMID: 39519653 PMCID: PMC11547776 DOI: 10.3390/molecules29215012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
How many times can a diffusing molecule permeate across a membrane or be adsorbed on a substrate? We employ an encounter-based approach to find the statistics of adsorption or permeation events for molecular diffusion in a general confining medium. Various features of these statistics are illustrated for two practically relevant cases: a flat boundary and a spherical confinement. Some applications of these fundamental results are discussed.
Collapse
Affiliation(s)
- Denis S. Grebenkov
- CNRS – Université de Montréal CRM—CNRS, 6128 Succ Centre-Ville, Montréal, QC H3C 3J7, Canada;
- Laboratoire de Physique de la Matière Condensée, CNRS—Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
4
|
Grebenkov DS. Diffusion-Controlled Reactions: An Overview. Molecules 2023; 28:7570. [PMID: 38005291 PMCID: PMC10674959 DOI: 10.3390/molecules28227570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
We review the milestones in the century-long development of the theory of diffusion-controlled reactions. Starting from the seminal work by von Smoluchowski, who recognized the importance of diffusion in chemical reactions, we discuss perfect and imperfect surface reactions, their microscopic origins, and the underlying mathematical framework. Single-molecule reaction schemes, anomalous bulk diffusions, reversible binding/unbinding kinetics, and many other extensions are presented. An alternative encounter-based approach to diffusion-controlled reactions is introduced, with emphasis on its advantages and potential applications. Some open problems and future perspectives are outlined.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée, CNRS-Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
5
|
Aquino T, Le Borgne T, Heyman J. Fluid-Solid Reaction in Porous Media as a Chaotic Restart Process. PHYSICAL REVIEW LETTERS 2023; 130:264001. [PMID: 37450789 DOI: 10.1103/physrevlett.130.264001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/10/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Chemical and biological reactions at fluid-solid interfaces are central to a broad range of porous material applications and research. Pore-scale solute transport limitations can reduce reaction rates, with marked consequences for a wide spectrum of natural and engineered processes. Recent advances show that chaotic mixing occurs spontaneously in porous media, but its impact on surface reactions is unknown. We show that pore-scale chaotic mixing significantly increases reaction efficiency compared to nonchaotic flows. We find that reaction rates are well described in terms of diffusive first-passage times of reactants to the solid interface subjected to a stochastic restart process resulting from Lagrangian chaos. Under chaotic mixing, the shear layer at no-slip interfaces sets the restart rate and leads to a characteristic scaling of reaction efficiency with Péclet number, in excellent agreement with numerical simulations. Reaction rates are insensitive to the flow topology as long as flow is chaotic, suggesting the relevance of this process to a broad range of porous materials.
Collapse
Affiliation(s)
- Tomás Aquino
- Spanish National Research Council (IDAEA - CSIC), 08034 Barcelona, Spain
- Université de Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Tanguy Le Borgne
- Université de Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Joris Heyman
- Université de Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| |
Collapse
|
6
|
Grimes J, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien SL, Stepniewski TM, Medel-Lacruz B, Baidya M, Makarova M, Mistry R, Goulding J, Drube J, Hoffmann C, Owen DM, Shukla AK, Selent J, Hill SJ, Calebiro D. Plasma membrane preassociation drives β-arrestin coupling to receptors and activation. Cell 2023; 186:2238-2255.e20. [PMID: 37146613 PMCID: PMC7614532 DOI: 10.1016/j.cell.2023.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/16/2022] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
β-arrestin plays a key role in G protein-coupled receptor (GPCR) signaling and desensitization. Despite recent structural advances, the mechanisms that govern receptor-β-arrestin interactions at the plasma membrane of living cells remain elusive. Here, we combine single-molecule microscopy with molecular dynamics simulations to dissect the complex sequence of events involved in β-arrestin interactions with both receptors and the lipid bilayer. Unexpectedly, our results reveal that β-arrestin spontaneously inserts into the lipid bilayer and transiently interacts with receptors via lateral diffusion on the plasma membrane. Moreover, they indicate that, following receptor interaction, the plasma membrane stabilizes β-arrestin in a longer-lived, membrane-bound state, allowing it to diffuse to clathrin-coated pits separately from the activating receptor. These results expand our current understanding of β-arrestin function at the plasma membrane, revealing a critical role for β-arrestin preassociation with the lipid bilayer in facilitating its interactions with receptors and subsequent activation.
Collapse
Affiliation(s)
- Jak Grimes
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Shannon L O'Brien
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Tomasz M Stepniewski
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | - Brian Medel-Lacruz
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | - Mithu Baidya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Maria Makarova
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK; School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ravi Mistry
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Joëlle Goulding
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Julia Drube
- Institut für Molekulare Zellbiologie, Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität, Jena 07745, Germany
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität, Jena 07745, Germany
| | - Dylan M Owen
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK; Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Jana Selent
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | - Stephen J Hill
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
7
|
Lawley SD, Johnson J. Slowest first passage times, redundancy, and menopause timing. J Math Biol 2023; 86:90. [PMID: 37148411 DOI: 10.1007/s00285-023-01921-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
Biological events are often initiated when a random "searcher" finds a "target," which is called a first passage time (FPT). In some biological systems involving multiple searchers, an important timescale is the time it takes the slowest searcher(s) to find a target. For example, of the hundreds of thousands of primordial follicles in a woman's ovarian reserve, it is the slowest to leave that trigger the onset of menopause. Such slowest FPTs may also contribute to the reliability of cell signaling pathways and influence the ability of a cell to locate an external stimulus. In this paper, we use extreme value theory and asymptotic analysis to obtain rigorous approximations to the full probability distribution and moments of slowest FPTs. Though the results are proven in the limit of many searchers, numerical simulations reveal that the approximations are accurate for any number of searchers in typical scenarios of interest. We apply these general mathematical results to models of ovarian aging and menopause timing, which reveals the role of slowest FPTs for understanding redundancy in biological systems. We also apply the theory to several popular models of stochastic search, including search by diffusive, subdiffusive, and mortal searchers.
Collapse
Affiliation(s)
- Sean D Lawley
- Department of Mathematics, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Joshua Johnson
- Division of Reproductive Sciences, Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Guérin T, Dolgushev M, Bénichou O, Voituriez R. Imperfect narrow escape problem. Phys Rev E 2023; 107:034134. [PMID: 37072984 DOI: 10.1103/physreve.107.034134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/02/2023] [Indexed: 04/20/2023]
Abstract
We consider the kinetics of the imperfect narrow escape problem, i.e., the time it takes for a particle diffusing in a confined medium of generic shape to reach and to be adsorbed by a small, imperfectly reactive patch embedded in the boundary of the domain, in two or three dimensions. Imperfect reactivity is modeled by an intrinsic surface reactivity κ of the patch, giving rise to Robin boundary conditions. We present a formalism to calculate the exact asymptotics of the mean reaction time in the limit of large volume of the confining domain. We obtain exact explicit results in the two limits of large and small reactivities of the reactive patch, and a semianalytical expression in the general case. Our approach reveals an anomalous scaling of the mean reaction time as the inverse square root of the reactivity in the large-reactivity limit, valid for an initial position near the extremity of the reactive patch. We compare our exact results with those obtained within the "constant flux approximation"; we show that this approximation turns out to give exactly the next-to-leading-order term of the small-reactivity limit, and provides a good approximation of the reaction time far from the reactive patch for all reactivities, but not in the vicinity of the boundary of the reactive patch due to the above-mentioned anomalous scaling. These results thus provide a general framework to quantify the mean reaction times for the imperfect narrow escape problem.
Collapse
Affiliation(s)
- T Guérin
- Laboratoire Ondes et Matière d'Aquitaine, CNRS, UMR 5798, Université de Bordeaux, F-33400 Talence, France
| | - M Dolgushev
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), F-75005 Paris, France
| | - O Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), F-75005 Paris, France
| | - R Voituriez
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), F-75005 Paris, France
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), F-75005 Paris, France
| |
Collapse
|
9
|
Benkhadaj Z, Grebenkov DS. Encounter-based approach to diffusion with resetting. Phys Rev E 2022; 106:044121. [PMID: 36397494 DOI: 10.1103/physreve.106.044121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
An encounter-based approach consists in using the boundary local time as a proxy for the number of encounters between a diffusing particle and a target to implement various surface reaction mechanisms on that target. In this paper, we investigate the effects of stochastic resetting onto diffusion-controlled reactions in bounded confining domains. We first discuss the effect of position resetting onto the propagator and related quantities; in this way, we retrieve a number of earlier results but also provide complementary insights into them. Second, we introduce boundary local time resetting and investigate its impact. Curiously, we find that this type of resetting does not alter the conventional propagator governing the diffusive dynamics in the presence of a partially reactive target with a constant reactivity. In turn, the generalized propagator for other surface reaction mechanisms can be significantly affected. Our general results are illustrated for diffusion on an interval with reactive end points. Further perspectives and some open problems are discussed.
Collapse
Affiliation(s)
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
10
|
Alexandre A, Mangeat M, Guérin T, Dean DS. How Stickiness Can Speed Up Diffusion in Confined Systems. PHYSICAL REVIEW LETTERS 2022; 128:210601. [PMID: 35687439 DOI: 10.1103/physrevlett.128.210601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
The paradigmatic model for heterogeneous media used in diffusion studies is built from reflecting obstacles and surfaces. It is well known that the crowding effect produced by these reflecting surfaces slows the dispersion of Brownian tracers. Here, using a general adsorption desorption model with surface diffusion, we show analytically that making surfaces or obstacles attractive can accelerate dispersion. In particular, we show that this enhancement of diffusion can exist even when the surface diffusion constant is smaller than that in the bulk. Even more remarkably, this enhancement effect occurs when the effective diffusion constant, when restricted to surfaces only, is lower than the effective diffusivity with purely reflecting boundaries. We give analytical formulas for this intriguing effect in periodic arrays of spheres as well as undulating microchannels. Our results are confirmed by numerical calculations and Monte Carlo simulations.
Collapse
Affiliation(s)
- A Alexandre
- Laboratoire Ondes et matière d'Aquitaine, CNRS/University of Bordeaux, F-33400 Talence, France
| | - M Mangeat
- Center for Biophysics and Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - T Guérin
- Laboratoire Ondes et matière d'Aquitaine, CNRS/University of Bordeaux, F-33400 Talence, France
| | - D S Dean
- Laboratoire Ondes et matière d'Aquitaine, CNRS/University of Bordeaux, F-33400 Talence, France
- Team MONC, INRIA Bordeaux Sud Ouest, CNRS UMR 5251, Bordeaux INP, University Bordeaux, F-33400 Talence, France
| |
Collapse
|
11
|
Grebenkov DS, Skvortsov AT. Mean first-passage time to a small absorbing target in three-dimensional elongated domains. Phys Rev E 2022; 105:054107. [PMID: 35706289 DOI: 10.1103/physreve.105.054107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
We derive an approximate formula for the mean first-passage time (MFPT) to a small absorbing target of arbitrary shape inside an elongated domain of a slowly varying axisymmetric profile. For this purpose, the original Poisson equation in three dimensions is reduced to an effective one-dimensional problem on an interval with a semipermeable semiabsorbing membrane. The approximate formula captures correctly the dependence of the MFPT on the distance to the target, the radial profile of the domain, and the size and the shape of the target. This approximation is validated by Monte Carlo simulations.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée, UMR No. 7643, CNRS, Ecole Polytechnique, IP Paris, 91120 Palaiseau, France
| | - Alexei T Skvortsov
- Maritime Division, Defence Science and Technology Group, 506 Lorimer Street, Fishermans Bend, Victoria 3207, Australia
| |
Collapse
|
12
|
Chaigneau A, Grebenkov DS. First-passage times to anisotropic partially reactive targets. Phys Rev E 2022; 105:054146. [PMID: 35706315 DOI: 10.1103/physreve.105.054146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
We investigate restricted diffusion in a bounded domain towards a small partially reactive target in three- and higher-dimensional spaces. We propose a simple explicit approximation for the principal eigenvalue of the Laplace operator with mixed Robin-Neumann boundary conditions. This approximation involves the harmonic capacity and the surface area of the target, the volume of the confining domain, the diffusion coefficient, and the reactivity. The accuracy of the approximation is checked by using a finite-elements method. The proposed approximation determines also the mean first-reaction time, the long-time decay of the survival probability, and the overall reaction rate on that target. We identify the relevant lengthscale of the target, which determines its trapping capacity, and we investigate its relation to the target shape. In particular, we study the effect of target anisotropy on the principal eigenvalue by computing the harmonic capacity of prolate and oblate spheroids in various space dimensions. Some implications of these results in chemical physics and biophysics are briefly discussed.
Collapse
Affiliation(s)
- Adrien Chaigneau
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91120 Palaiseau, France
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91120 Palaiseau, France
| |
Collapse
|
13
|
Le Vot F, Yuste SB, Abad E, Grebenkov DS. First-encounter time of two diffusing particles in two- and three-dimensional confinement. Phys Rev E 2022; 105:044119. [PMID: 35590615 DOI: 10.1103/physreve.105.044119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The statistics of the first-encounter time of diffusing particles changes drastically when they are placed under confinement. In the present work, we make use of Monte Carlo simulations to study the behavior of a two-particle system in two- and three-dimensional domains with reflecting boundaries. Based on the outcome of the simulations, we give a comprehensive overview of the behavior of the survival probability S(t) and the associated first-encounter time probability density H(t) over a broad time range spanning several decades. In addition, we provide numerical estimates and empirical formulas for the mean first-encounter time 〈T〉, as well as for the decay time T characterizing the monoexponential long-time decay of the survival probability. Based on the distance between the boundary and the center of mass of two particles, we obtain an empirical lower bound t_{B} for the time at which S(t) starts to significantly deviate from its counterpart for the no boundary case. Surprisingly, for small-sized particles, the dominant contribution to T depends only on the total diffusivity D=D_{1}+D_{2}, in sharp contrast to the one-dimensional case. This contribution can be related to the Wiener sausage generated by a fictitious Brownian particle with diffusivity D. In two dimensions, the first subleading contribution to T is found to depend weakly on the ratio D_{1}/D_{2}. We also investigate the slow-diffusion limit when D_{2}≪D_{1}, and we discuss the transition to the limit when one particle is a fixed target. Finally, we give some indications to anticipate when T can be expected to be a good approximation for 〈T〉.
Collapse
Affiliation(s)
- F Le Vot
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06071 Badajoz, Spain
| | - S B Yuste
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06071 Badajoz, Spain
| | - E Abad
- Departamento de Física Aplicada and Instituto de Computación Científica Avanzada (ICCAEx), Centro Universitario de Mérida, Universidad de Extremadura, E-06800 Mérida, Spain
| | - D S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
14
|
Grebenkov DS, Kumar A. Reversible target-binding kinetics of multiple impatient particles. J Chem Phys 2022; 156:084107. [DOI: 10.1063/5.0083849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Certain biochemical reactions can only be triggered after binding a sufficient number of particles to a specific target region such as an enzyme or a protein sensor. We investigate the distribution of the reaction time, i.e., the first instance when all independently diffusing particles are bound to the target. When each particle binds irreversibly, this is equivalent to the first-passage time of the slowest (last) particle. In turn, reversible binding to the target renders the problem much more challenging and drastically changes the distribution of the reaction time. We derive the exact solution of this problem and investigate the short-time and long-time asymptotic behaviors of the reaction time probability density. We also analyze how the mean reaction time depends on the unbinding rate and the number of particles. Our exact and asymptotic solutions are compared to Monte Carlo simulations.
Collapse
Affiliation(s)
- Denis S. Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS–Ecole Polytechnique, IP Paris, 91120 Palaiseau, France
| | - Aanjaneya Kumar
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
15
|
Mangeat M, Rieger H. Narrow escape problem in two-shell spherical domains. Phys Rev E 2021; 104:044124. [PMID: 34781502 DOI: 10.1103/physreve.104.044124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/01/2021] [Indexed: 11/07/2022]
Abstract
Intracellular transport in living cells is often spatially inhomogeneous with an accelerated effective diffusion close to the cell membrane and a ballistic motion away from the centrosome due to active transport along actin filaments and microtubules, respectively. Recently it was reported that the mean first passage time (MFPT) for transport to a specific area on the cell membrane is minimal for an optimal actin cortex width. In this paper, we ask whether this optimization in a two-compartment domain can also be achieved by passive Brownian particles. We consider a Brownian motion with different diffusion constants in the two shells and a potential barrier between the two, and we investigate the narrow escape problem by calculating the MFPT for Brownian particles to reach a small window on the external boundary. In two and three dimensions, we derive asymptotic expressions for the MFPT in the thin cortex and small escape region limits confirmed by numerical calculations of the MFPT using the finite-element method and stochastic simulations. From this analytical and numeric analysis, we finally extract the dependence of the MFPT on the ratio of diffusion constants, the potential barrier height, and the width of the outer shell. The first two are monotonous, whereas the last one may have a minimum for a sufficiently attractive cortex, for which we propose an analytical expression of the potential barrier height matching very well the numerical predictions.
Collapse
Affiliation(s)
- Matthieu Mangeat
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Heiko Rieger
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
16
|
Misiura MM, Berezhkovskii AM, Bezrukov SM, Kolomeisky AB. Surface-facilitated trapping by active sites: From catalysts to viruses. J Chem Phys 2021; 155:184106. [PMID: 34773956 PMCID: PMC8730370 DOI: 10.1063/5.0069917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/20/2021] [Indexed: 11/14/2022] Open
Abstract
Trapping by active sites on surfaces plays important roles in various chemical and biological processes, including catalysis, enzymatic reactions, and viral entry into host cells. However, the mechanisms of these processes remain not well understood, mostly because the existing theoretical descriptions are not fully accounting for the role of the surfaces. Here, we present a theoretical investigation on the dynamics of surface-assisted trapping by specific active sites. In our model, a diffusing particle can occasionally reversibly bind to the surface and diffuse on it before reaching the final target site. An approximate theoretical framework is developed, and its predictions are tested by Brownian dynamics computer simulations. It is found that the surface diffusion can be crucial in mediating trapping by active sites. Our theoretical predictions work reasonably well as long as the area of the active site is much smaller than the overall surface area. Potential applications of our approach are discussed.
Collapse
Affiliation(s)
- Mikita M. Misiura
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Alexander M. Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey M. Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
17
|
Guérin T, Dolgushev M, Bénichou O, Voituriez R. Universal kinetics of imperfect reactions in confinement. Commun Chem 2021; 4:157. [PMID: 36697538 PMCID: PMC9814865 DOI: 10.1038/s42004-021-00591-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/14/2021] [Indexed: 01/28/2023] Open
Abstract
Chemical reactions generically require that particles come into contact. In practice, reaction is often imperfect and can necessitate multiple random encounters between reactants. In confined geometries, despite notable recent advances, there is to date no general analytical treatment of such imperfect transport-limited reaction kinetics. Here, we determine the kinetics of imperfect reactions in confining domains for any diffusive or anomalously diffusive Markovian transport process, and for different models of imperfect reactivity. We show that the full distribution of reaction times is obtained in the large confining volume limit from the knowledge of the mean reaction time only, which we determine explicitly. This distribution for imperfect reactions is found to be identical to that of perfect reactions upon an appropriate rescaling of parameters, which highlights the robustness of our results. Strikingly, this holds true even in the regime of low reactivity where the mean reaction time is independent of the transport process, and can lead to large fluctuations of the reaction time - even in simple reaction schemes. We illustrate our results for normal diffusion in domains of generic shape, and for anomalous diffusion in complex environments, where our predictions are confirmed by numerical simulations.
Collapse
Affiliation(s)
- Thomas Guérin
- grid.412041.20000 0001 2106 639XLaboratoire Ondes et Matière d’Aquitaine, CNRS/University of Bordeaux, F-33400 Talence, France
| | - Maxim Dolgushev
- grid.462844.80000 0001 2308 1657Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne University, 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne University, 4 Place Jussieu, 75005, Paris, France.
| | - Raphaël Voituriez
- grid.462844.80000 0001 2308 1657Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne University, 4 Place Jussieu, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Laboratoire Jean Perrin, CNRS/Sorbonne University, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
18
|
Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix. Proc Natl Acad Sci U S A 2021; 118:2101807118. [PMID: 34183394 DOI: 10.1073/pnas.2101807118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Micro/nanoswimmers convert diverse energy sources into directional movement, demonstrating significant promise for biomedical and environmental applications, many of which involve complex, tortuous, or crowded environments. Here, we investigated the transport behavior of self-propelled catalytic Janus particles in a complex interconnected porous void space, where the rate-determining step involves the escape from a cavity and translocation through holes to adjacent cavities. Surprisingly, self-propelled nanoswimmers escaped from cavities more than 20× faster than passive (Brownian) particles, despite the fact that the mobility of nanoswimmers was less than 2× greater than that of passive particles in unconfined bulk liquid. Combining experimental measurements, Monte Carlo simulations, and theoretical calculations, we found that the escape of nanoswimmers was enhanced by nuanced secondary effects of self-propulsion which were amplified in confined environments. In particular, active escape was facilitated by anomalously rapid confined short-time mobility, highly efficient surface-mediated searching for holes, and the effective abolition of entropic and/or electrostatic barriers at the exit hole regions by propulsion forces. The latter mechanism converted the escape process from barrier-limited to search-limited. These findings provide general and important insights into micro/nanoswimmer mobility in complex environments.
Collapse
|
19
|
Orré T, Joly A, Karatas Z, Kastberger B, Cabriel C, Böttcher RT, Lévêque-Fort S, Sibarita JB, Fässler R, Wehrle-Haller B, Rossier O, Giannone G. Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions. Nat Commun 2021; 12:3104. [PMID: 34035280 PMCID: PMC8149821 DOI: 10.1038/s41467-021-23372-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Focal adhesions (FAs) initiate chemical and mechanical signals involved in cell polarity, migration, proliferation and differentiation. Super-resolution microscopy revealed that FAs are organized at the nanoscale into functional layers from the lower plasma membrane to the upper actin cytoskeleton. Yet, how FAs proteins are guided into specific nano-layers to promote interaction with given targets is unknown. Using single protein tracking, super-resolution microscopy and functional assays, we link the molecular behavior and 3D nanoscale localization of kindlin with its function in integrin activation inside FAs. We show that immobilization of integrins in FAs depends on interaction with kindlin. Unlike talin, kindlin displays free diffusion along the plasma membrane outside and inside FAs. We demonstrate that the kindlin Pleckstrin Homology domain promotes membrane diffusion and localization to the membrane-proximal integrin nano-layer, necessary for kindlin enrichment and function in FAs. Using kindlin-deficient cells, we show that kindlin membrane localization and diffusion are crucial for integrin activation, cell spreading and FAs formation. Thus, kindlin uses a different route than talin to reach and activate integrins, providing a possible molecular basis for their complementarity during integrin activation.
Collapse
Affiliation(s)
- Thomas Orré
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Adrien Joly
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Zeynep Karatas
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Birgit Kastberger
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, Geneva 4, Switzerland
| | - Clément Cabriel
- Institut des Sciences Moléculaires d'Orsay, CNRS UMR8214, Univ. Paris-Sud, Université Paris Saclay, Orsay, Cedex, France
| | | | - Sandrine Lévêque-Fort
- Institut des Sciences Moléculaires d'Orsay, CNRS UMR8214, Univ. Paris-Sud, Université Paris Saclay, Orsay, Cedex, France
| | - Jean-Baptiste Sibarita
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | | | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, Geneva 4, Switzerland
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France.
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France.
| |
Collapse
|
20
|
Mishra B, Johnson ME. Speed limits of protein assembly with reversible membrane localization. J Chem Phys 2021; 154:194101. [PMID: 34240891 PMCID: PMC8131109 DOI: 10.1063/5.0045867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Protein assembly is often studied in a three-dimensional solution, but a significant fraction of binding events involve proteins that can reversibly bind and diffuse along a two-dimensional surface. In a recent study, we quantified how proteins can exploit the reduced dimensionality of the membrane to trigger complex formation. Here, we derive a single expression for the characteristic timescale of this multi-step assembly process, where the change in dimensionality renders rates and concentrations effectively time-dependent. We find that proteins can accelerate dimer formation due to an increase in relative concentration, driving more frequent collisions, which often win out over slow-downs due to diffusion. Our model contains two protein populations that dimerize with one another and use a distinct site to bind membrane lipids, creating a complex reaction network. However, by identifying two major rate-limiting pathways to reach an equilibrium steady-state, we derive an excellent approximation for the mean first passage time when lipids are in abundant supply. Our theory highlights how the "sticking rate" or effective adsorption coefficient of the membrane is central in controlling timescales. We also derive a corrected localization rate to quantify how the geometry of the system and diffusion can reduce rates of membrane localization. We validate and test our results using kinetic and particle-based reaction-diffusion simulations. Our results establish how the speed of key assembly steps can shift by orders-of-magnitude when membrane localization is possible, which is critical to understanding mechanisms used in cells.
Collapse
Affiliation(s)
- Bhavya Mishra
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, USA
| | - Margaret E. Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, USA
| |
Collapse
|
21
|
Xu X, Kim WK, Dzubiella J. Facilitating target search in polymer networks: Effects of target size and mixed one-dimensional and three-dimensional diffusion. Phys Rev E 2021; 103:032502. [PMID: 33862684 DOI: 10.1103/physreve.103.032502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/13/2021] [Indexed: 11/07/2022]
Abstract
We theoretically investigate the problem of diffusive target search and mean first passage times (MFPTs) of a tracer in a three-dimensional (3D) polymer network with a particular focus on the effects of combined one-dimensional (1D) diffusion along the polymer chains and 3D diffusion within the network. For this, we employ computer simulations as well as limiting theories of a single diffusive tracer searching for a spherical target fixed at a cross-link of a homogeneous 3D cubic lattice network. The free parameters are the target size, the ratio of the 1D and 3D friction constants, and the transition probabilities between bound and unbound states. For a very strongly bound tracer on the chains, the expected predominant set of 1D lattice diffusion (LD) is found. The MFPT in the LD process significantly depends on the target size, yielding two distinct scaling behaviors for target sizes smaller and larger than the network mesh size, respectively. In the limit of a pointlike target, the LD search becomes a random walk process on the lattice, which recovers the analytical solution for the MFPT previously reported by S. Condamin, O. Bénichou, and M. Moreau [Phys. Rev. Lett. 95, 260601 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.260601]. For the very weakly bound tracer, the expected 3D free diffusion (FD) dominates, extrapolating to the well-known Smoluchowski limit. A critical target size is found above which the MFPT in the FD process is faster than in the LD process. For intermediate binding, i.e., a combination of LD and FD processes, the target search time can be minimized for an optimal range of target sizes and partitions between FD and LD, for which the MFPTs are substantially faster when compared to the limiting FD or LD processes. Our study may provide a theoretical basis to better understand and predict search and reaction processes in complex structured materials, thereby contributing to practical applications such as designing nanoreactors where catalytic targets are immobilized in polymer networks.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| | - Won Kyu Kim
- Korea Institute for Advanced Study, 85 Hoegiro, Seoul 02455, Republic of Korea
| | - Joachim Dzubiella
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany.,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
| |
Collapse
|
22
|
Nayak I, Nandi A, Das D. Capture of a diffusive prey by multiple predators in confined space. Phys Rev E 2021; 102:062109. [PMID: 33466016 DOI: 10.1103/physreve.102.062109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 11/07/2022]
Abstract
The first passage search of a diffusing target (prey) by multiple searchers (predators) in confinement is an important problem in the stochastic process literature. While the analogous problem in open space has been studied in some detail, a systematic study in confined space is still lacking. In this paper, we study the first passage times for this problem in one, two, and three dimensions. Due to confinement, the survival probability of the target takes a form ∼e^{-t/τ} at large times t. The characteristic capture timescale τ associated with the rare capture events are rather challenging to measure. We use a computational algorithm that allows us to estimate τ with high accuracy. We study in detail the behavior of τ as a function of the system parameters, namely, the number of searchers N, the relative diffusivity r of the target with respect to the searcher, and the system size. We find that τ deviates from the ∼1/N scaling seen in the case of a static target, and this deviation varies continuously with r and the spatial dimensions.
Collapse
Affiliation(s)
- Indrani Nayak
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Amitabha Nandi
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
23
|
Le Vot F, Yuste SB, Abad E, Grebenkov DS. First-encounter time of two diffusing particles in confinement. Phys Rev E 2020; 102:032118. [PMID: 33076026 DOI: 10.1103/physreve.102.032118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/20/2020] [Indexed: 11/07/2022]
Abstract
We investigate how confinement may drastically change both the probability density of the first-encounter time and the associated survival probability in the case of two diffusing particles. To obtain analytical insights into this problem, we focus on two one-dimensional settings: a half-line and an interval. We first consider the case with equal particle diffusivities, for which exact results can be obtained for the survival probability and the associated first-encounter time density valid over the full time domain. We also evaluate the moments of the first-encounter time when they exist. We then turn to the case with unequal diffusivities and focus on the long-time behavior of the survival probability. Our results highlight the great impact of boundary effects in diffusion-controlled kinetics even for simple one-dimensional settings, as well as the difficulty of obtaining analytic results as soon as the translational invariance of such systems is broken.
Collapse
Affiliation(s)
- F Le Vot
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx) Universidad de Extremadura, E-06071 Badajoz, Spain
| | - S B Yuste
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx) Universidad de Extremadura, E-06071 Badajoz, Spain
| | - E Abad
- Departamento de Física Aplicada and Instituto de Computación Científica Avanzada (ICCAEx) Centro Universitario de Mérida Universidad de Extremadura, E-06800 Mérida, Spain
| | - D S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France and Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
24
|
Grebenkov DS. Paradigm Shift in Diffusion-Mediated Surface Phenomena. PHYSICAL REVIEW LETTERS 2020; 125:078102. [PMID: 32857533 DOI: 10.1103/physrevlett.125.078102] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Diffusion-mediated surface phenomena are crucial for human life and industry, with examples ranging from oxygen capture by lung alveolar surface to heterogeneous catalysis, gene regulation, membrane permeation, and filtration processes. Their current description via diffusion equations with mixed boundary conditions is limited to simple surface reactions with infinite or constant reactivity. In this Letter, we propose a probabilistic approach based on the concept of boundary local time to investigate the intricate dynamics of diffusing particles near a reactive surface. Reformulating surface-particle interactions in terms of stopping conditions, we obtain in a unified way major diffusion-reaction characteristics such as the propagator, the survival probability, the first-passage time distribution, and the reaction rate. This general formalism allows us to describe new surface reaction mechanisms such as for instance surface reactivity depending on the number of encounters with the diffusing particle that can model the effects of catalyst fooling or membrane degradation. The disentanglement of the geometric structure of the medium from surface reactivity opens far-reaching perspectives for modeling, optimization, and control of diffusion-mediated surface phenomena.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
25
|
Distribution of extreme first passage times of diffusion. J Math Biol 2020; 80:2301-2325. [DOI: 10.1007/s00285-020-01496-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/08/2020] [Indexed: 02/07/2023]
|
26
|
Lawley SD. Universal formula for extreme first passage statistics of diffusion. Phys Rev E 2020; 101:012413. [PMID: 32069639 DOI: 10.1103/physreve.101.012413] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Indexed: 01/18/2023]
Abstract
The timescales of many physical, chemical, and biological processes are determined by first passage times (FPTs) of diffusion. The overwhelming majority of FPT research studies the time it takes a single diffusive searcher to find a target. However, the more relevant quantity in many systems is the time it takes the fastest searcher to find a target from a large group of searchers. This fastest FPT depends on extremely rare events and has a drastically faster timescale than the FPT of a given single searcher. In this work, we prove a simple explicit formula for every moment of the fastest FPT. The formula is remarkably universal, as it holds for d-dimensional diffusion processes (i) with general space-dependent diffusivities and force fields, (ii) on Riemannian manifolds, (iii) in the presence of reflecting obstacles, and (iv) with partially absorbing targets. Our results rigorously confirm, generalize, correct, and unify various conjectures and heuristics about the fastest FPT.
Collapse
Affiliation(s)
- Sean D Lawley
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
27
|
Grebenkov DS. Probability distribution of the boundary local time of reflected Brownian motion in Euclidean domains. Phys Rev E 2019; 100:062110. [PMID: 31962414 DOI: 10.1103/physreve.100.062110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 06/10/2023]
Abstract
How long does a diffusing molecule spend in a close vicinity of a confining boundary or a catalytic surface? This quantity is determined by the boundary local time, which plays thus a crucial role in the description of various surface-mediated phenomena, such as heterogeneous catalysis, permeation through semipermeable membranes, or surface relaxation in nuclear magnetic resonance. In this paper, we obtain the probability distribution of the boundary local time in terms of the spectral properties of the Dirichlet-to-Neumann operator. We investigate the short-time and long-time asymptotic behaviors of this random variable for both bounded and unbounded domains. This analysis provides complementary insights onto the dynamics of diffusing molecules near partially reactive boundaries.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
28
|
Aquino T, Lapeyre GJ, Dentz M. Survival and confinement under quenched disorder. Phys Chem Chem Phys 2019; 21:23598-23610. [PMID: 31621720 DOI: 10.1039/c9cp03792f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the survival and confinement of random walkers under quenched disorder characterized by spatially-varying waiting times and decay rates. Spatial heterogeneity and segregation lead to a dynamic coupling between transport and reaction, resulting in history-dependent dynamics exhibiting long survivals and confinement. The survival probability decays as a power law, in contrast to the classical exponential law for decay at a homogeneous rate. The mean squared displacement shows dimension-dependent subdiffusive growth followed by localization, with stronger confinement in higher dimensions.
Collapse
Affiliation(s)
- Tomás Aquino
- Spanish National Research Council (IDAEA-CSIC), 08034 Barcelona, Spain.
| | | | | |
Collapse
|
29
|
Grebenkov DS. Reversible reactions controlled by surface diffusion on a sphere. J Chem Phys 2019; 151:154103. [PMID: 31640367 DOI: 10.1063/1.5119969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Denis S. Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS – Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
30
|
Grebenkov DS. Spectral theory of imperfect diffusion-controlled reactions on heterogeneous catalytic surfaces. J Chem Phys 2019; 151:104108. [DOI: 10.1063/1.5115030] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Denis S. Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS – Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
31
|
Levernier N, Dolgushev M, Bénichou O, Voituriez R, Guérin T. Survival probability of stochastic processes beyond persistence exponents. Nat Commun 2019; 10:2990. [PMID: 31278270 PMCID: PMC6611868 DOI: 10.1038/s41467-019-10841-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/30/2019] [Indexed: 11/21/2022] Open
Abstract
For many stochastic processes, the probability [Formula: see text] of not-having reached a target in unbounded space up to time [Formula: see text] follows a slow algebraic decay at long times, [Formula: see text]. This is typically the case of symmetric compact (i.e. recurrent) random walks. While the persistence exponent [Formula: see text] has been studied at length, the prefactor [Formula: see text], which is quantitatively essential, remains poorly characterized, especially for non-Markovian processes. Here we derive explicit expressions for [Formula: see text] for a compact random walk in unbounded space by establishing an analytic relation with the mean first-passage time of the same random walk in a large confining volume. Our analytical results for [Formula: see text] are in good agreement with numerical simulations, even for strongly correlated processes such as Fractional Brownian Motion, and thus provide a refined understanding of the statistics of longest first-passage events in unbounded space.
Collapse
Affiliation(s)
- N Levernier
- NCCR Chemical Biology, Departments of Biochemistry and Theoretical Physics, University of Geneva, Geneva, Switzerland
| | - M Dolgushev
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - O Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - R Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.
- Laboratoire Jean Perrin, CNRS/Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.
| | - T Guérin
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux, Unité Mixte de Recherche 5798, CNRS, F-33400, Talence, France
| |
Collapse
|
32
|
Lawley SD, Madrid JB. First passage time distribution of multiple impatient particles with reversible binding. J Chem Phys 2019; 150:214113. [DOI: 10.1063/1.5098312] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- S. D. Lawley
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | - J. B. Madrid
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
33
|
Grebenkov DS. Time-averaged mean square displacement for switching diffusion. Phys Rev E 2019; 99:032133. [PMID: 30999505 DOI: 10.1103/physreve.99.032133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 06/09/2023]
Abstract
We consider a classic two-state switching diffusion model from a single-particle tracking perspective. The mean and the variance of the time-averaged mean square displacement (TAMSD) are computed exactly. When the measurement time (i.e., the trajectory duration) is comparable to or smaller than the mean residence times in each state, the ergodicity breaking parameter is shown to take arbitrarily large values, suggesting an apparent weak ergodicity breaking for this ergodic model. In this regime, individual random trajectories are not representative while the related TAMSD curves exhibit a broad spread, in agreement with experimental observations in living cells and complex fluids. Switching diffusions can thus present, in some cases, an ergodic alternative to commonly used and inherently non-ergodic continuous-time random walks that capture similar features.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS - Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau, France
| |
Collapse
|
34
|
Mondal S, Acharya S, Biswas R, Bagchi B, Zare RN. Enhancement of reaction rate in small-sized droplets: A combined analytical and simulation study. J Chem Phys 2018; 148:244704. [PMID: 29960367 DOI: 10.1063/1.5030114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Several recent mass spectrometry experiments reveal a marked enhancement of the reaction rate of organic reactions in microdroplets. This enhancement has been tentatively attributed to the accumulation of excess charge on a surface, which in turn can give rise to a lowering of activation energy of the reaction. Here we model the reactions in droplets as a three-step process: (i) diffusion of a reactant from the core of the droplet to the surface, (ii) search by diffusion of the reactant on the surface to find a reactive partner, and finally (iii) the intrinsic reaction leading to bond breaking and product formation. We obtain analytic expressions for the mean search time (MST) to find a target located on the surface by a reactant in both two- and three-dimensional droplets. Analytical results show quantitative agreement with Brownian dynamics simulations. We find, as also reported earlier, that the MST varies as R2/D, where R is the radius of the droplet and D is the diffusion constant of the molecules in the droplet medium. We also find that a hydronium ion in the vicinity can substantially weaken the bond and hence lowers the activation barrier. We observe a similar facilitation of bond breaking in the presence of a static dipolar electric field along any of the three Cartesian axes. If the intrinsic reaction is faster compared to the mean search time involved, it becomes primarily a diffusion-controlled process; otherwise the reaction cannot be accelerated in the droplet medium. The air-droplet interface provides a different environment compared to the interior of the droplet. Hence, we might also expect a completely different mechanism and products in the case of droplet reactions.
Collapse
Affiliation(s)
- Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Subhajit Acharya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Rajib Biswas
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
35
|
Abstract
We introduce and investigate the escape problem for random walkers that may eventually die, decay, bleach, or lose activity during their diffusion towards an escape or reactive region on the boundary of a confining domain. In the case of a first-order kinetics (i.e., exponentially distributed lifetimes), we study the effect of the associated death rate onto the survival probability, the exit probability, and the mean first passage time. We derive the upper and lower bounds and some approximations for these quantities. We reveal three asymptotic regimes of small, intermediate, and large death rates. General estimates and asymptotics are compared to several explicit solutions for simple domains and to numerical simulations. These results allow one to account for stochastic photobleaching of fluorescent tracers in bio-imaging, degradation of mRNA molecules in genetic translation mechanisms, or high mortality rates of spermatozoa in the fertilization process. Our findings provide a mathematical ground for optimizing storage containers and materials to reduce the risk of leakage of dangerous chemicals or nuclear wastes.
Collapse
Affiliation(s)
- D. S. Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS – Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau, France
| | - J.-F. Rupprecht
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
36
|
Chatterjee A, Christou C, Schadschneider A. Diffusion with resetting inside a circle. Phys Rev E 2018; 97:062106. [PMID: 30011581 DOI: 10.1103/physreve.97.062106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 06/08/2023]
Abstract
We study the Brownian motion of a particle in a bounded circular two-dimensional domain in search for a stationary target on the boundary of the domain. The process switches between two modes: one where it performs a two-dimensional diffusion inside the circle and one where it diffuses along the one-dimensional boundary. During the process, the Brownian particle resets to its initial position with a constant rate r. The Fokker-Planck formalism allows us to calculate the mean time to absorption (MTA) as well as the optimal resetting rate for which the MTA is minimized. From the derived analytical results the parameter regions where resetting reduces the search time can be specified. We also provide a numerical method for the verification of our results.
Collapse
Affiliation(s)
- Abhinava Chatterjee
- Institute for Theoretical Physics, University of Cologne, Zülpicher Straße 77, D-50937 Köln, Germany
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Christos Christou
- Institute for Theoretical Physics, University of Cologne, Zülpicher Straße 77, D-50937 Köln, Germany
| | - Andreas Schadschneider
- Institute for Theoretical Physics, University of Cologne, Zülpicher Straße 77, D-50937 Köln, Germany
| |
Collapse
|
37
|
Deblais A, Barois T, Guerin T, Delville PH, Vaudaine R, Lintuvuori JS, Boudet JF, Baret JC, Kellay H. Boundaries Control Collective Dynamics of Inertial Self-Propelled Robots. PHYSICAL REVIEW LETTERS 2018; 120:188002. [PMID: 29775342 DOI: 10.1103/physrevlett.120.188002] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Simple ingredients, such as well-defined interactions and couplings for the velocity and orientation of self-propelled objects, are sufficient to produce complex collective behavior in assemblies of such entities. Here, we use assemblies of rodlike robots made motile through self-vibration. When confined in circular arenas, dilute assemblies of these rods act as a gas. Increasing the surface fraction leads to a collective behavior near the boundaries: polar clusters emerge while, in the bulk, gaslike behavior is retained. The coexistence between a gas and surface clusters is a direct consequence of inertial effects as shown by our simulations. A theoretical model, based on surface mediated transport accounts for this coexistence and illustrates the exact role of the boundaries. Our study paves the way towards the control of collective behavior: By using deformable but free to move arenas, we demonstrate that the surface induced clusters can lead to directed motion, while the topology of the surface states can be controlled by biasing the motility of the particles.
Collapse
Affiliation(s)
- A Deblais
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| | - T Barois
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| | - T Guerin
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| | - P H Delville
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| | - R Vaudaine
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| | - J S Lintuvuori
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| | - J F Boudet
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| | - J C Baret
- CNRS, Univ. Bordeaux, CRPP, UPR 8641, 115 Avenue Schweitzer, 33600 Pessac, France
| | - H Kellay
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| |
Collapse
|
38
|
Spatial Cytoskeleton Organization Supports Targeted Intracellular Transport. Biophys J 2018; 114:1420-1432. [PMID: 29590599 DOI: 10.1016/j.bpj.2018.01.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 01/28/2023] Open
Abstract
The efficiency of intracellular cargo transport from specific sources to target locations is strongly dependent upon molecular motor-assisted motion along the cytoskeleton. Radial transport along microtubules and lateral transport along the filaments of the actin cortex underneath the cell membrane are characteristic for cells with a centrosome. The interplay between the specific cytoskeleton organization and the motor performance results in a spatially inhomogeneous intermittent search strategy. To analyze the efficiency of such intracellular search strategies, we formulate a random velocity model with intermittent arrest states. We evaluate efficiency in terms of mean first passage times for three different, frequently encountered intracellular transport tasks: 1) the narrow escape problem, which emerges during cargo transport to a synapse or other specific region of the cell membrane; 2) the reaction problem, which considers the binding time of two particles within the cell; and 3) the reaction-escape problem, which arises when cargo must be released at a synapse only after pairing with another particle. Our results indicate that cells are able to realize efficient search strategies for various intracellular transport tasks economically through a spatial cytoskeleton organization that involves only a narrow actin cortex rather than a cell body filled with randomly oriented actin filaments.
Collapse
|
39
|
Affiliation(s)
- Jaeoh Shin
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B. Kolomeisky
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Center
for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
40
|
Wang D, Wu H, Schwartz DK. Three-Dimensional Tracking of Interfacial Hopping Diffusion. PHYSICAL REVIEW LETTERS 2017; 119:268001. [PMID: 29328686 DOI: 10.1103/physrevlett.119.268001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 05/04/2023]
Abstract
Theoretical predictions have suggested that molecular motion at interfaces-which influences processes including heterogeneous catalysis, (bio)chemical sensing, lubrication and adhesion, and nanomaterial self-assembly-may be dominated by hypothetical "hops" through the adjacent liquid phase, where a diffusing molecule readsorbs after a given hop according to a probabilistic "sticking coefficient." Here, we use three-dimensional (3D) single-molecule tracking to explicitly visualize this process for human serum albumin at solid-liquid interfaces that exert varying electrostatic interactions on the biomacromolecule. Following desorption from the interface, a molecule experiences multiple unproductive surface encounters before readsorption. An average of approximately seven surface collisions is required for the repulsive surfaces, decreasing to approximately two and a half for surfaces that are more attractive. The hops themselves are also influenced by long-range interactions, with increased electrostatic repulsion causing hops of longer duration and distance. These findings explicitly demonstrate that interfacial diffusion is dominated by biased 3D Brownian motion involving bulk-surface coupling and that it can be controlled by influencing short- and long-range adsorbate-surface interactions.
Collapse
Affiliation(s)
- Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Haichao Wu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
41
|
Grebenkov DS. First passage times for multiple particles with reversible target-binding kinetics. J Chem Phys 2017; 147:134112. [DOI: 10.1063/1.4996395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Denis S. Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS–Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau,
France and Interdisciplinary Scientific Center Poncelet (ISCP) (UMI 2615 CNRS/IUM/IITP RAS/Steklov MI RAS/Skoltech/HSE), Bolshoy
Vlasyevskiy Pereulok 11, 119002 Moscow, Russia
| |
Collapse
|
42
|
Gherardi M, Calabrese L, Tamm M, Cosentino Lagomarsino M. Model of chromosomal loci dynamics in bacteria as fractional diffusion with intermittent transport. Phys Rev E 2017; 96:042402. [PMID: 29347533 DOI: 10.1103/physreve.96.042402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Indexed: 06/07/2023]
Abstract
The short-time dynamics of bacterial chromosomal loci is a mixture of subdiffusive and active motion, in the form of rapid relocations with near-ballistic dynamics. While previous work has shown that such rapid motions are ubiquitous, we still have little grasp on their physical nature, and no positive model is available that describes them. Here, we propose a minimal theoretical model for loci movements as a fractional Brownian motion subject to a constant but intermittent driving force, and compare simulations and analytical calculations to data from high-resolution dynamic tracking in E. coli. This analysis yields the characteristic time scales for intermittency. Finally, we discuss the possible shortcomings of this model, and show that an increase in the effective local noise felt by the chromosome associates to the active relocations.
Collapse
Affiliation(s)
- Marco Gherardi
- Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
- Physics Department, University of Milan, Via Celoria 16, 20133 Milano, Italy
| | - Ludovico Calabrese
- Physics Department, University of Milan, Via Celoria 16, 20133 Milano, Italy
| | - Mikhail Tamm
- Physics Department, University of Moscow, 119991 Moscow, Russia
- Department of Applied Mathematics, Higher School of Economics, 101000 Moscow, Russia
| | - Marco Cosentino Lagomarsino
- Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
- CNRS, UMR 7238, Paris, France
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
43
|
Lanoiselée Y, Grebenkov DS. Unraveling intermittent features in single-particle trajectories by a local convex hull method. Phys Rev E 2017; 96:022144. [PMID: 28950648 DOI: 10.1103/physreve.96.022144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 01/01/2023]
Abstract
We propose a model-free method to detect change points between distinct phases in a single random trajectory of an intermittent stochastic process. The local convex hull (LCH) is constructed for each trajectory point, while its geometric properties (e.g., the diameter or the volume) are used as discriminators between phases. The efficiency of the LCH method is validated for six models of intermittent motion, including Brownian motion with different diffusivities or drifts, fractional Brownian motion with different Hurst exponents, and surface-mediated diffusion. We discuss potential applications of the method for detection of active and passive phases in the intracellular transport, temporal trapping or binding of diffusing molecules, alternating bulk and surface diffusion, run and tumble (or search) phases in the motion of bacteria and foraging animals, and instantaneous firing rates in neurons.
Collapse
Affiliation(s)
- Yann Lanoiselée
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau, France
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau, France and Interdisciplinary Scientific Center Poncelet (ISCP), Bolshoy Vlasyevskiy Pereulok 11, 119002 Moscow, Russia
| |
Collapse
|
44
|
Berezhkovskii AM, Dagdug L, Bezrukov SM. Bulk-mediated surface transport in the presence of bias. J Chem Phys 2017; 147:014103. [PMID: 28688439 PMCID: PMC5500123 DOI: 10.1063/1.4991730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022] Open
Abstract
Surface transport, when the particle is allowed to leave the surface, travel in the bulk for some time, and then return to the surface, is referred to as bulk-mediated surface transport. Recently, we proposed a formalism that significantly simplifies analysis of bulk-mediated surface diffusion [A. M. Berezhkovskii, L. Dagdug, and S. M. Bezrukov, J. Chem. Phys. 143, 084103 (2015)]. Here this formalism is extended to bulk-mediated surface transport in the presence of bias, i.e., when the particle has arbitrary drift velocities on the surface and in the bulk. A key advantage of our approach is that the transport problem reduces to that of a two-state problem of the particle transitions between the surface and the bulk. The latter can be solved with relative ease. The formalism is used to find the Laplace transforms of the first two moments of the particle displacement over the surface in time t at arbitrary values of the particle drift velocities and diffusivities on the surface and in the bulk. This allows us to analyze in detail the time dependence of the effective drift velocity of the particle on the surface, which can be highly nontrivial.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Leonardo Dagdug
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
45
|
Faux DA, McDonald PJ, Howlett NC. Nuclear-magnetic-resonance relaxation due to the translational diffusion of fluid confined to quasi-two-dimensional pores. Phys Rev E 2017; 95:033116. [PMID: 28415296 DOI: 10.1103/physreve.95.033116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 01/09/2023]
Abstract
Nuclear-magnetic-resonance (NMR) relaxation experimentation is an effective technique for nondestructively probing the dynamics of proton-bearing fluids in porous media. The frequency-dependent relaxation rate T_{1}^{-1} can yield a wealth of information on the fluid dynamics within the pore provided data can be fit to a suitable spin diffusion model. A spin diffusion model yields the dipolar correlation function G(t) describing the relative translational motion of pairs of ^{1}H spins which then can be Fourier transformed to yield T_{1}^{-1}. G(t) for spins confined to a quasi-two-dimensional (Q2D) pore of thickness h is determined using theoretical and Monte Carlo techniques. G(t) shows a transition from three- to two-dimensional motion with the transition time proportional to h^{2}. T_{1}^{-1} is found to be independent of frequency over the range 0.01-100 MHz provided h≳5 nm and increases with decreasing frequency and decreasing h for pores of thickness h<3 nm. T_{1}^{-1} increases linearly with the bulk water diffusion correlation time τ_{b} allowing a simple and direct estimate of the bulk water diffusion coefficient from the high-frequency limit of T_{1}^{-1} dispersion measurements in systems where the influence of paramagnetic impurities is negligible. Monte Carlo simulations of hydrated Q2D pores are executed for a range of surface-to-bulk desorption rates for a thin pore. G(t) is found to decorrelate when spins move from the surface to the bulk, display three-dimensional properties at intermediate times, and finally show a bulk-mediated surface diffusion (Lévy) mechanism at longer times. The results may be used to interpret NMR relaxation rates in hydrated porous systems in which the paramagnetic impurity density is negligible.
Collapse
Affiliation(s)
- D A Faux
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - P J McDonald
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - N C Howlett
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
46
|
Wang J, Zhang D, Xia B, Yu W. Spatial heterogeneity can facilitate the target search of self-propelled particles. SOFT MATTER 2017; 13:758-764. [PMID: 28045160 DOI: 10.1039/c6sm02679f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A numerical investigation of the target search dynamics of self-propelled particles (SPPs) in heterogeneous environments is presented in this work. We show that the spatial heterogeneity has a dramatic effect on the target search dynamics of SPPs. The relative magnitude of the self-propulsion length lp and the radius of the circular domain Rc determines how the mean search time of SPPs τ depends on the area fraction of fixed obstacles ϕob. For lp < Rc, the target search process is diffusion-dominated so that a monotonic increase in τ with increasing ϕob is observed. For lp > Rc, τ is shown to be a non-monotonic convex function as a function of ϕob due to the interplay of the distribution-dominated and diffusion-dominated dynamic regimes. Furthermore, at fixed ϕob, τ shows a minimum upon increasing the self-propulsion velocity v0 of a SPP of a slow rotational diffusion when it searches for a target at low ϕob, while it decreases monotonically at high ϕob. The present work highlights that the introduction of spatial heterogeneity causes rich dynamic behaviors of a SPP searching for a target, and deepens our understanding of the transport of active matter in heterogeneous media.
Collapse
Affiliation(s)
- Jiajun Wang
- CAS Key Laboratory of Soft Matter Chemistry, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China.
| | - Donghua Zhang
- CAS Key Laboratory of Soft Matter Chemistry, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China.
| | - Baicheng Xia
- CAS Key Laboratory of Soft Matter Chemistry, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China.
| | - Wancheng Yu
- CAS Key Laboratory of Soft Matter Chemistry, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China.
| |
Collapse
|
47
|
Lapeyre GJ, Dentz M. Reaction–diffusion with stochastic decay rates. Phys Chem Chem Phys 2017; 19:18863-18879. [DOI: 10.1039/c7cp02971c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Microscopic physical and chemical fluctuations in a reaction–diffusion system lead to anomalous chemical kinetics and transport on the mesoscopic scale. Emergent non-Markovian effects lead to power-law reaction times and localization of reacting species.
Collapse
Affiliation(s)
- G. John Lapeyre
- Spanish National Research Council (IDAEA-CSIC)
- E-08034 Barcelona
- Spain
- ICFO–Institut de Ciències Fotòniques
- Mediterranean Technology Park
| | - Marco Dentz
- Spanish National Research Council (IDAEA-CSIC)
- E-08034 Barcelona
- Spain
| |
Collapse
|
48
|
Grebenkov DS, Oshanin G. Diffusive escape through a narrow opening: new insights into a classic problem. Phys Chem Chem Phys 2017; 19:2723-2739. [DOI: 10.1039/c6cp06102h] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the mean first exit time (Tε) of a particle diffusing in a circular or a spherical micro-domain with an impenetrable confining boundary containing a small escape window (EW) of an angular size ε.
Collapse
Affiliation(s)
- Denis S. Grebenkov
- Laboratoire de Physique de la Matière Condensée
- CNRS
- Ecole Polytechnique
- Université Paris Saclay
- F-91128 Palaiseau Cedex
| | - Gleb Oshanin
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600)
- Sorbonne Universités
- Paris
- France
| |
Collapse
|
49
|
Hafner AE, Rieger H. Spatial organization of the cytoskeleton enhances cargo delivery to specific target areas on the plasma membrane of spherical cells. Phys Biol 2016; 13:066003. [PMID: 27845936 DOI: 10.1088/1478-3975/13/6/066003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intracellular transport is vital for the proper functioning and survival of a cell. Cargo (proteins, vesicles, organelles, etc) is transferred from its place of creation to its target locations via molecular motor assisted transport along cytoskeletal filaments. The transport efficiency is strongly affected by the spatial organization of the cytoskeleton, which constitutes an inhomogeneous, complex network. In cells with a centrosome microtubules grow radially from the central microtubule organizing center towards the cell periphery whereas actin filaments form a dense meshwork, the actin cortex, underneath the cell membrane with a broad range of orientations. The emerging ballistic motion along filaments is frequently interrupted due to constricting intersection nodes or cycles of detachment and reattachment processes in the crowded cytoplasm. In order to investigate the efficiency of search strategies established by the cell's specific spatial organization of the cytoskeleton we formulate a random velocity model with intermittent arrest states. With extensive computer simulations we analyze the dependence of the mean first passage times for narrow escape problems on the structural characteristics of the cytoskeleton, the motor properties and the fraction of time spent in each state. We find that an inhomogeneous architecture with a small width of the actin cortex constitutes an efficient intracellular search strategy.
Collapse
Affiliation(s)
- Anne E Hafner
- Department of Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | | |
Collapse
|
50
|
Schwarz K, Schröder Y, Rieger H. Numerical analysis of homogeneous and inhomogeneous intermittent search strategies. Phys Rev E 2016; 94:042133. [PMID: 27841552 DOI: 10.1103/physreve.94.042133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Indexed: 11/07/2022]
Abstract
Random search processes for targets that are inhomogeneously distributed in a search domain require spatially inhomogeneous search strategies to find the target as fast as possible. Here, we compare systematically the efficiency of homogeneous and inhomogeneous strategies for intermittent search, which alternates stochastically between slow, diffusive motion in which the target can be detected and fast ballistic motion during which targets cannot be detected. We analyze the mean first-passage time of homogeneous and inhomogeneous strategies for three paradigmatic search problems: (1) the narrow escape problem, i.e., the searcher looks for a small area on the boundary of the search domain, (2) reaction kinetics, i.e., the detection of an immobile target in the interior of a search domain, and (3) the reaction-escape problem, i.e., the searcher first needs to find a mobile target before it can escape through a narrow area on the boundary. Using families of inhomogeneous strategies, partially motivated by the organization of the cytoskeleton in cells with a centrosome, we show that they are almost always more efficient than homogeneous strategies.
Collapse
Affiliation(s)
- Karsten Schwarz
- Theoretische Physik, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Yannick Schröder
- Theoretische Physik, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Heiko Rieger
- Theoretische Physik, Universität des Saarlandes, 66123 Saarbrücken, Germany
| |
Collapse
|