1
|
Tyrcha B, Gupta T, Patkowski K, Żuchowski PS. Analytical Derivatives of Symmetry-Adapted Perturbation Theory Corrections for Interaction-Induced Properties. J Chem Theory Comput 2025. [PMID: 40278835 DOI: 10.1021/acs.jctc.5c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
A new approach that allows for the calculation of interaction-induced properties exclusively from the properties of monomers is presented. The method is derived in the spirit of the symmetry-adapted perturbation theory (SAPT). The interaction-induced property is presented in the first order of the molecular interaction operator, including the exchange effects. Test calculations of the interaction-induced dipole moment were carried out for a number of small nonpolar and polar atomic and molecular dimers. The numerical results show that the analytical first-order corrections proposed in this paper reproduce the finite-field treatment of the first-order corrections of SAPT. Compared to supermolecular approaches, the performance of the finite-field SAPT (up to the second order) constitutes an insightful alternative for calculations of interaction-induced properties.
Collapse
Affiliation(s)
- Bartosz Tyrcha
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5/7, 87-100 Toruń, Poland
| | - Tarun Gupta
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5/7, 87-100 Toruń, Poland
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Piotr S Żuchowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5/7, 87-100 Toruń, Poland
| |
Collapse
|
2
|
Persinger TD, Han J, Heaven MC. Electronic Spectroscopy and Photoionization of LiMg. J Phys Chem A 2021; 125:3653-3663. [PMID: 33882672 DOI: 10.1021/acs.jpca.1c01656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dimers consisting of an alkali metal bound to an alkaline earth metal are of interest from the perspectives of their bonding characteristics and their potential for being laser cooled to ultracold temperatures. There have been experimental and theoretical studies of many of these species, but spectroscopic data for LiMg and the LiMg+ cation are sparse. In this study, rotationally resolved electronic spectra for LiMg are presented. The ground state is confirmed to be X12Σ+ and observations of low-lying electronically excited states are reported for the first time. Reexamination of transitions in the near-UV spectral range indicates that previous band assignments should be revised. Two-color laser excitation techniques were used to determine an ionization energy of 4.7695(4) eV. This value is 1.2 eV below the previously reported experimental estimate. Vibrationally resolved spectra were obtained for LiMg+, yielding molecular constants that were consistent with a substantial strengthening of the bond on ionization.
Collapse
Affiliation(s)
- Thomas D Persinger
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jiande Han
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Michael C Heaven
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
He X, Wang K, Zhuang J, Xu P, Gao X, Guo R, Sheng C, Liu M, Wang J, Li J, Shlyapnikov GV, Zhan M. Coherently forming a single molecule in an optical trap. Science 2020; 370:331-335. [PMID: 32972992 DOI: 10.1126/science.aba7468] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 08/27/2020] [Indexed: 11/02/2022]
Abstract
Ultracold single molecules have wide-ranging potential applications, such as ultracold chemistry, precision measurements, quantum simulation, and quantum computation. However, given the difficulty of achieving full control of a complex atom-molecule system, the coherent formation of single molecules remains a challenge. Here, we report an alternative route to coherently bind two atoms into a weakly bound molecule at megahertz levels by coupling atomic spins to their two-body relative motion in a strongly focused laser with inherent polarization gradients. The coherent nature is demonstrated by long-lived atom-molecule Rabi oscillations. We further manipulate the motional levels of the molecules and measure the binding energy precisely. This work opens the door to full control of all degrees of freedom in atom-molecule systems.
Collapse
Affiliation(s)
- Xiaodong He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, China. .,Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kunpeng Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhuang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiang Gao
- Institute for Theoretical Physics, Vienna University of Technology, A-1040 Vienna, Austria.,Beijing Computational Science Research Center, Beijing 100193, China
| | - Ruijun Guo
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Sheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Min Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jin Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiaming Li
- Department of Physics and Center for Atomic and Molecular Nanosciences, Tsinghua University, Beijing 100084, China.,Key Laboratory for Laser Plasmas (Ministry of Education), and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - G V Shlyapnikov
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.,Russian Quantum Center, Skolkovo, Moscow 121025, Russia.,Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Mingsheng Zhan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, China. .,Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
4
|
Mishra C, Santos L, Nath R. Self-Bound Doubly Dipolar Bose-Einstein Condensates. PHYSICAL REVIEW LETTERS 2020; 124:073402. [PMID: 32142338 DOI: 10.1103/physrevlett.124.073402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
We analyze the physics of self-bound droplets in a doubly dipolar Bose-Einstein condensate composed by particles with both electric and magnetic dipole moments. Using the particularly relevant case of dysprosium, we show that the anisotropy of the doubly dipolar interaction potential is highly versatile and nontrivial, depending critically on the relative orientation and strength between the two dipole moments. This opens novel possibilities for exploring intriguing quantum many-body physics. Interestingly, by varying the angle between the two dipoles we find a dimensional crossover from quasi-one-dimensional to quasi-two-dimensional self-bound droplets. This opens a so far unique scenario in condensate physics, in which a dimensional crossover is solely driven by interactions in the absence of any confinement.
Collapse
Affiliation(s)
- Chinmayee Mishra
- Indian Institute of Science Education and Research, Pune 411 008, India
| | - Luis Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstrasse 2, DE-30167 Hannover, Germany
| | - Rejish Nath
- Indian Institute of Science Education and Research, Pune 411 008, India
| |
Collapse
|
5
|
Green A, Li H, Toh JHS, Tang X, McCormick KC, Li M, Tiesinga E, Kotochigova S, Gupta S. Feshbach Resonances in p-Wave Three-Body Recombination within Fermi-Fermi Mixtures of Open-Shell 6Li and Closed-Shell 173Yb Atoms. PHYSICAL REVIEW. X 2020; 10:10.1103/PhysRevX.10.031037. [PMID: 34408918 PMCID: PMC8369980 DOI: 10.1103/physrevx.10.031037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report on the observation of magnetic Feshbach resonances in a Fermi-Fermi mixture of ultracold atoms with extreme mass imbalance and on their unique p-wave dominated three-body recombination processes. Our system consists of open-shell alkali-metal 6Li and closed-shell 173Yb atoms, both spin polarized and held at various temperatures between 1 and 20 μK. We confirm that Feshbach resonances in this system are solely the result of a weak separation-dependent hyperfine coupling between the electronic spin of 6Li and the nuclear spin of 173Yb. Our analysis also shows that three-body recombination rates are controlled by the identical fermion nature of the mixture, even in the presence of s-wave collisions between the two species and with recombination rate coefficients outside the Wigner threshold regime at our lowest temperature. Specifically, a comparison of experimental and theoretical line shapes of the recombination process indicates that the characteristic asymmetric line shape as a function of applied magnetic field and a maximum recombination rate coefficient that is independent of temperature can only be explained by triatomic collisions with nonzero, p-wave total orbital angular momentum. The resonances can be used to form ultracold doublet ground-state molecules and to simulate quantum superfluidity in mass-imbalanced mixtures.
Collapse
Affiliation(s)
- Alaina Green
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Hui Li
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Jun Hui See Toh
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Xinxin Tang
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | | | - Ming Li
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Eite Tiesinga
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
| | | | - Subhadeep Gupta
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
6
|
Lassablière L, Quéméner G. Controlling the Scattering Length of Ultracold Dipolar Molecules. PHYSICAL REVIEW LETTERS 2018; 121:163402. [PMID: 30387665 DOI: 10.1103/physrevlett.121.163402] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 06/08/2023]
Abstract
By applying a circularly polarized and slightly blue-detuned microwave field with respect to the first excited rotational state of a dipolar molecule, one can engineer a long-range, shallow potential well in the entrance channel of the two colliding partners. As the applied microwave ac field is increased, the long-range well becomes deeper and can support a certain number of bound states, which in turn bring the value of the molecule-molecule scattering length from a large negative value to a large positive one. We adopt an adimensional approach where the molecules are described by a rescaled rotational constant B[over ˜]=B/s_{E_{3}} where s_{E_{3}} is a characteristic dipolar energy. We found that molecules with B[over ˜]>10^{8} are immune to any quenching losses when a sufficient ac field is applied, the ratio elastic to quenching processes can reach values above 10^{3}, and that the value and sign of the scattering length can be tuned. The ability to control the molecular scattering length opens the door for a rich, strongly correlated, many-body physics for ultracold molecules, similar to that for ultracold atoms.
Collapse
Affiliation(s)
- Lucas Lassablière
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France
| | - Goulven Quéméner
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
7
|
Lepers M, Li H, Wyart JF, Quéméner G, Dulieu O. Ultracold Rare-Earth Magnetic Atoms with an Electric Dipole Moment. PHYSICAL REVIEW LETTERS 2018; 121:063201. [PMID: 30141648 DOI: 10.1103/physrevlett.121.063201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 06/08/2023]
Abstract
We propose a new method to produce an electric and magnetic dipolar gas of ultracold dysprosium atoms. The pair of nearly degenerate energy levels of opposite parity, at 17513.33 cm^{-1} with electronic angular momentum J=10, and at 17514.50 cm^{-1} with J=9, can be mixed with an external electric field, thus inducing an electric dipole moment in the laboratory frame. For field amplitudes relevant to current-day experiments, i.e., an electric field of 5 kV/cm, we predict a large magnetic dipole moment up to 13 Bohr magnetons, and sizeable electric dipole moment up to 0.22 D. When a magnetic field is present, we show that the induced electric dipole moment is strongly dependent on the angle between the fields. The lifetime of the field-mixed levels is found in the millisecond range, thus allowing for suitable experimental detection and manipulation.
Collapse
Affiliation(s)
- Maxence Lepers
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Hui Li
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France
| | - Jean-François Wyart
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France
- LERMA, Observatoire de Paris-Meudon, PSL Research University, Sorbonne Universités, UPMC Université Paris 6, CNRS UMR8112, 92195 Meudon, France
| | - Goulven Quéméner
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France
| | - Olivier Dulieu
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
8
|
Ciamei A, Szczepkowski J, Bayerle A, Barbé V, Reichsöllner L, Tzanova SM, Chen CC, Pasquiou B, Grochola A, Kowalczyk P, Jastrzebski W, Schreck F. The RbSr2Σ+ground state investigatedviaspectroscopy of hot and ultracold molecules. Phys Chem Chem Phys 2018; 20:26221-26240. [DOI: 10.1039/c8cp03919d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthesis of information fromab initiocalculations and molecular spectroscopy allows a comprehensive description of the RbSr2Σ+ground-state potential.
Collapse
|
9
|
Witkowski M, Nagórny B, Munoz-Rodriguez R, Ciuryło R, Żuchowski PS, Bilicki S, Piotrowski M, Morzyński P, Zawada M. Dual Hg-Rb magneto-optical trap. OPTICS EXPRESS 2017; 25:3165-3179. [PMID: 28241534 DOI: 10.1364/oe.25.003165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a two-species laser cooling apparatus capable of simultaneously collecting Rb and Hg atomic gases into a magneto-optical trap (MOT). The atomic sources, laser system, and vacuum set-up are described. While there is a loss of Rb atoms in the MOT due to photoionization by the Hg cooling laser, we show that it does not prevent simultaneous trapping of Rb and Hg. We also demonstrate interspecies collision-induced losses in the 87Rb-202Hg system.
Collapse
|
10
|
Pototschnig JV, Hauser AW, Ernst WE. Electric dipole moments and chemical bonding of diatomic alkali-alkaline earth molecules. Phys Chem Chem Phys 2016; 18:5964-73. [PMID: 26837666 DOI: 10.1039/c5cp06598d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We investigate the properties of alkali-alkaline earth diatomic molecules in the lowest Σ(+) states of the doublet and quartet multiplicity by ab initio calculations. In all sixteen cases studied, the permanent electric dipole moment points in opposite directions for the two spin states. This peculiarity can be explained by molecular orbital theory. We further discuss dissociation energies and bond distances. We analyze trends and provide an empirically motivated model for the prediction of the permanent electric dipole moment for combinations of alkali and alkaline earth atoms not studied in this work.
Collapse
Affiliation(s)
- Johann V Pototschnig
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria.
| | - Andreas W Hauser
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria.
| | - Wolfgang E Ernst
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria.
| |
Collapse
|
11
|
Kemp SL, Butler KL, Freytag R, Hopkins SA, Hinds EA, Tarbutt MR, Cornish SL. Production and characterization of a dual species magneto-optical trap of cesium and ytterbium. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:023105. [PMID: 26931832 DOI: 10.1063/1.4941719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We describe an apparatus designed to trap and cool a Yb and Cs mixture. The apparatus consists of a dual species effusive oven source, dual species Zeeman slower, magneto-optical traps in a single ultra-high vacuum science chamber, and the associated laser systems. The dual species Zeeman slower is used to load sequentially the two species into their respective traps. Its design is flexible and may be adapted for other experiments with different mixtures of atomic species. The apparatus provides excellent optical access and can apply large magnetic bias fields to the trapped atoms. The apparatus regularly produces 10(8) Cs atoms at 13.3 μK in an optical molasses, and 10(9) (174)Y b atoms cooled to 22 μK in a narrowband magneto-optical trap.
Collapse
Affiliation(s)
- S L Kemp
- Department of Physics, Joint Quantum Center (JQC) Durham-Newcastle, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - K L Butler
- Department of Physics, Joint Quantum Center (JQC) Durham-Newcastle, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - R Freytag
- Department of Physics, Joint Quantum Center (JQC) Durham-Newcastle, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - S A Hopkins
- Department of Physics, Joint Quantum Center (JQC) Durham-Newcastle, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - E A Hinds
- Blackett Laboratory, Center for Cold Matter, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - M R Tarbutt
- Blackett Laboratory, Center for Cold Matter, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - S L Cornish
- Department of Physics, Joint Quantum Center (JQC) Durham-Newcastle, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
12
|
|
13
|
Pototschnig JV, Krois G, Lackner F, Ernst WE. Investigation of the RbCa molecule: Experiment and theory. JOURNAL OF MOLECULAR SPECTROSCOPY 2015; 310:126-134. [PMID: 25922550 PMCID: PMC4407902 DOI: 10.1016/j.jms.2015.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/12/2015] [Indexed: 06/04/2023]
Abstract
We present a thorough theoretical and experimental study of the electronic structure of RbCa. The mixed alkali-alkaline earth molecule RbCa was formed on superfluid helium nanodroplets. Excited states of the molecule in the range of 13 000-23 000 cm-1 were recorded by resonance enhanced multi-photon ionization time-of-flight spectroscopy. The experiment is accompanied by high level ab initio calculations of ground and excited state properties, utilizing a multireference configuration interaction method based on multiconfigurational self consistent field calculations. With this approach the potential energy curves and permanent electric dipole moments of 24 electronic states were calculated. In addition we computed the transition dipole moments for transitions from the ground into excited states. The combination of experiment and theory allowed the assignment of features in the recorded spectrum to the excited [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] states, where the experiment allowed to benchmark the calculation. This is the first experimental work giving insight into the previously unknown RbCa molecule, which offers great prospects in ultracold molecular physics due to its magnetic and electronic dipole moment in the [Formula: see text] ground state.
Collapse
|
14
|
Pototschnig JV, Krois G, Lackner F, Ernst WE. Ab initio study of the RbSr electronic structure: potential energy curves, transition dipole moments, and permanent electric dipole moments. J Chem Phys 2014; 141:234309. [PMID: 25527937 DOI: 10.1063/1.4903791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm(-1). We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s (2)S) + Sr (5s4d (3)P°) and Rb (5p (2)P°) + Sr (5s(2) (1)S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s (2)S) + Sr (5s4d (3)P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.
Collapse
Affiliation(s)
- Johann V Pototschnig
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Günter Krois
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Florian Lackner
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Wolfgang E Ernst
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| |
Collapse
|
15
|
Lackner F, Krois G, Buchsteiner T, Pototschnig JV, Ernst WE. Helium-droplet-assisted preparation of cold RbSr molecules. PHYSICAL REVIEW LETTERS 2014; 113:153001. [PMID: 25375707 DOI: 10.1103/physrevlett.113.153001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Indexed: 06/04/2023]
Abstract
We present a combined experimental and theoretical study of the RbSr molecule. The experimental approach is based on the formation of RbSr molecules on helium nanodroplets. Utilizing two-photon ionization spectroscopy, an excitation spectrum ranging from 11,600 up to 23,000 cm(-1) was recorded. High level ab initio calculations of potential energy curves and transition dipole moments accompany the experiment and facilitate an assignment of transitions. We show that RbSr molecules desorb from the helium droplets upon excitation, which enables dispersed fluorescence spectroscopy of free RbSr. These spectra elucidate X(2)Σ(+) ground and excited state properties. Emission spectra originating from states corresponding to the Rb(5s(2)S) + Sr(5s5p(3)P) asymptote were recorded; spin-orbit coupling was included for the simulation. The results should provide a good basis for achieving the formation of this molecule in cold collisions, thus offering intriguing prospects for ultracold molecular physics.
Collapse
Affiliation(s)
- Florian Lackner
- Institute of Experimental Physics, TU Graz, Petersgasse 16, A-8010 Graz, Austria
| | - Günter Krois
- Institute of Experimental Physics, TU Graz, Petersgasse 16, A-8010 Graz, Austria
| | - Thomas Buchsteiner
- Institute of Experimental Physics, TU Graz, Petersgasse 16, A-8010 Graz, Austria
| | - Johann V Pototschnig
- Institute of Experimental Physics, TU Graz, Petersgasse 16, A-8010 Graz, Austria
| | - Wolfgang E Ernst
- Institute of Experimental Physics, TU Graz, Petersgasse 16, A-8010 Graz, Austria
| |
Collapse
|
16
|
Krois G, Lackner F, Pototschnig JV, Buchsteiner T, Ernst WE. Characterization of RbSr molecules: spectral analysis on helium droplets. Phys Chem Chem Phys 2014; 16:22373-81. [DOI: 10.1039/c4cp03135k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Gopakumar G, Abe M, Hada M, Kajita M. Dipole polarizability of alkali-metal (Na, K, Rb)-alkaline-earth-metal (Ca, Sr) polar molecules: prospects for alignment. J Chem Phys 2014; 140:224303. [PMID: 24929384 DOI: 10.1063/1.4881396] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electronic open-shell ground-state properties of selected alkali-metal-alkaline-earth-metal polar molecules are investigated. We determine potential energy curves of the (2)Σ(+) ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes ((23)Na, (39)K, (85)Rb)-((40)Ca, (88)Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.
Collapse
Affiliation(s)
- Geetha Gopakumar
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Minori Abe
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Masahiko Hada
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Masatoshi Kajita
- National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan
| |
Collapse
|
18
|
Tomza M, González-Férez R, Koch CP, Moszynski R. Controlling magnetic Feshbach resonances in polar open-shell molecules with nonresonant light. PHYSICAL REVIEW LETTERS 2014; 112:113201. [PMID: 24702365 DOI: 10.1103/physrevlett.112.113201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Indexed: 06/03/2023]
Abstract
Magnetically tunable Feshbach resonances for polar paramagnetic ground-state diatomics are too narrow to allow for magnetoassociation starting from trapped, ultracold atoms. We show that nonresonant light can be used to engineer the Feshbach resonances in their position and width. For nonresonant field intensities of the order of 10(9) W/cm(2), we find the width to be increased by 3 orders of magnitude, reaching a few Gauss. This opens the way for producing ultracold molecules with sizable electric and magnetic dipole moments and thus for many-body quantum simulations with such particles.
Collapse
Affiliation(s)
- Michał Tomza
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland and Instituto 'Carlos I' de Física Teórica y Computacional and Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada, Spain and Theoretische Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Rosario González-Férez
- Instituto 'Carlos I' de Física Teórica y Computacional and Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada, Spain and The Hamburg Center for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| | - Christiane P Koch
- Theoretische Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Robert Moszynski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
19
|
Khramov A, Hansen A, Dowd W, Roy RJ, Makrides C, Petrov A, Kotochigova S, Gupta S. Ultracold heteronuclear mixture of ground and excited state atoms. PHYSICAL REVIEW LETTERS 2014; 112:033201. [PMID: 24484136 DOI: 10.1103/physrevlett.112.033201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Indexed: 06/03/2023]
Abstract
We report on the realization of an ultracold mixture of lithium atoms in the ground state and ytterbium atoms in an excited metastable (3P2) state. Such a mixture can support broad magnetic Feshbach resonances which may be utilized for the production of ultracold molecules with an electronic spin degree of freedom, as well as novel Efimov trimers. We investigate the interaction properties of the mixture in the presence of an external magnetic field and find an upper limit for the background interspecies two-body inelastic decay coefficient of K2'<3×10(-12) cm3/s for the 3P2 mJ=-1 substate. We calculate the dynamic polarizabilities of the Yb(3P2) magnetic substates for a range of wavelengths, and find good agreement with our measurements at 1064 nm. Our calculations also allow the identification of magic frequencies where Yb ground and metastable states are identically trapped and the determination of the interspecies van der Waals coefficients.
Collapse
Affiliation(s)
- Alexander Khramov
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Anders Hansen
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - William Dowd
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Richard J Roy
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | | | - Alexander Petrov
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA and St. Petersburg Nuclear Physics Institute, Gatchina 188300, Russia, and Division of Quantum Mechanics, St. Petersburg State University, St. Petersburg 198904, Russia
| | | | - Subhadeep Gupta
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
20
|
Abstract
Over the past decade, and particularly the past five years, a quiet revolution has been building at the border between atomic physics and experimental quantum chemistry. The rapid development of techniques for producing cold and even ultracold molecules without a perturbing rare-gas cluster shell is now enabling the study of chemical reactions and scattering at the quantum scattering limit with only a few partial waves contributing to the incident channel. Moreover, the ability to perform these experiments with nonthermal distributions comprising one or a few specific states enables the observation and even full control of state-to-state collision rates in this computation-friendly regime: This is perhaps the most elementary study possible of scattering and reaction dynamics.
Collapse
Affiliation(s)
- Benjamin K Stuhl
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899
| | | | | |
Collapse
|
21
|
Krois G, Pototschnig JV, Lackner F, Ernst WE. Spectroscopy of cold LiCa molecules formed on helium nanodroplets. J Phys Chem A 2013; 117:13719-31. [PMID: 24028555 PMCID: PMC3871282 DOI: 10.1021/jp407818k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/11/2013] [Indexed: 11/30/2022]
Abstract
We report on the formation of mixed alkali-alkaline earth molecules (LiCa) on helium nanodroplets and present a comprehensive experimental and theoretical study of the ground and excited states of LiCa. Resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy were used for the experimental investigation of LiCa from 15000 to 25500 cm(-1). The 4(2)Σ(+) and 3(2)Π states show a vibrational structure accompanied by distinct phonon wings, which allows us to determine molecular parameters as well as to study the interaction of the molecule with the helium droplet. Higher excited states (4(2)Π, 5(2)Σ(+), 5(2)Π, and 6(2)Σ(+)) are not vibrationally resolved and vibronic transitions start to overlap. The experimental spectrum is well reproduced by high-level ab initio calculations. By using a multireference configuration interaction (MRCI) approach, we calculated the 19 lowest lying potential energy curves (PECs) of the LiCa molecule. On the basis of these calculations, we could identify previously unobserved transitions. Our results demonstrate that the helium droplet isolation approach is a powerful method for the characterization of tailor-made alkali-alkaline earth molecules. In this way, important contributions can be made to the search for optimal pathways toward the creation of ultracold alkali-alkaline earth ground state molecules from the corresponding atomic species. Furthermore, a test for PECs calculated by ab initio methods is provided.
Collapse
Affiliation(s)
- Günter Krois
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Johann V. Pototschnig
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Florian Lackner
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Wolfgang E. Ernst
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| |
Collapse
|
22
|
González-Martínez ML, Hutson JM. Ultracold hydrogen atoms: a versatile coolant to produce ultracold molecules. PHYSICAL REVIEW LETTERS 2013; 111:203004. [PMID: 24289682 DOI: 10.1103/physrevlett.111.203004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Indexed: 06/02/2023]
Abstract
We show theoretically that ultracold hydrogen atoms have very favorable properties for sympathetic cooling of molecules to microkelvin temperatures. We calculate the potential energy surfaces for spin-polarized interactions of H atoms with the prototype molecules NH(3Σ-) and OH(2Π) and show that they are shallow (50 to 80 cm(-1)) and only weakly anisotropic. We carry out quantum collision calculations on H+NH and H+OH and show that the ratio of elastic to inelastic cross sections is high enough to allow sympathetic cooling from temperatures well over 1 K for NH and around 250 mK for OH.
Collapse
Affiliation(s)
- Maykel L González-Martínez
- Joint Quantum Centre (JQC) Durham/Newcastle, Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | | |
Collapse
|
23
|
Xiao KL, Yang CL, Wang MS, Ma XG, Liu WW. An ab initio study of the ground and low-lying excited states of KBe with the effect of inner-shell electrons. J Chem Phys 2013; 139:074305. [PMID: 23968090 DOI: 10.1063/1.4818452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The potential energy curves (PECs) of 1(2)Σ(+), 2(2)Σ(+), 1(2)Π, and 2(2)Π states of KBe are calculated using multireference configuration interaction method and large all-electron basis sets. Four sets of frozen core orbitals (FCOs) are considered to examine the effect of inner-shell correlation electrons on the molecular properties. The ro-vibrational energy levels are obtained by solving the Schrödinger equation of nuclear motion based on the ab initio PECs. The spectroscopic parameters are determined from the ro-vibrational levels with Dunham expansion. The PECs are fitted into analytical potential energy functions using the Morse long-range potential function. The dipole moment functions of the states for KBe calculated with different FCOs are presented. The transition dipole moments for KBe between 1(2)Σ(+) and 2(2)Σ(+) states, 1(2)Π and 1(2)Σ(+) states, and 2(2)Π and 1(2)Σ(+) states are also obtained.
Collapse
Affiliation(s)
- Ke-La Xiao
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Kato S, Sugawa S, Shibata K, Yamamoto R, Takahashi Y. Control of resonant interaction between electronic ground and excited states. PHYSICAL REVIEW LETTERS 2013; 110:173201. [PMID: 23679722 DOI: 10.1103/physrevlett.110.173201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Indexed: 06/02/2023]
Abstract
We observe magnetic Feshbach resonances in a collision between the ground and metastable states of two-electron atoms of ytterbium (Yb). We measure the on-site interaction of doubly occupied sites of an atomic Mott-insulator state in a three-dimensional optical lattice as a collisional frequency shift in a high-resolution laser spectroscopy. The observed spectra are well fitted by a simple theoretical formula, in which two particles with an s-wave contact interaction are confined in a harmonic trap. This analysis reveals a wide variation of the interaction with a resonance behavior around a magnetic field of about 1.1 G for the energetically lowest magnetic sublevel of 170Yb, as well as around 360 mG for the energetically highest magnetic sublevel of 174Yb. The observed Feshbach resonance can only be induced by an anisotropic interatomic interaction. This scheme will open the door to a variety of studies using two-electron atoms with tunable interaction.
Collapse
Affiliation(s)
- Shinya Kato
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
25
|
Stellmer S, Pasquiou B, Grimm R, Schreck F. Creation of ultracold Sr(2) molecules in the electronic ground state. PHYSICAL REVIEW LETTERS 2012; 109:115302. [PMID: 23005642 DOI: 10.1103/physrevlett.109.115302] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Indexed: 06/01/2023]
Abstract
We report on the creation of ultracold (84)Sr(2) molecules in the electronic ground state. The molecules are formed from atom pairs on sites of an optical lattice using stimulated Raman adiabatic passage (STIRAP). We achieve a transfer efficiency of 30% and obtain 4×10(4) molecules with full control over the external and internal quantum state. STIRAP is performed near the narrow (1)S(0)-(3)P(1) intercombination transition, using a vibrational level of the 1(0(u)(+)) potential as an intermediate state. In preparation of our molecule association scheme, we have determined the binding energies of the last vibrational levels of the 1(0(u)(+)), 1(1(u)) excited-state and the X (1)Σ(g)(+) ground-state potentials. Our work overcomes the previous limitation of STIRAP schemes to systems with magnetic Feshbach resonances, thereby establishing a route that is applicable to many systems beyond alkali-metal dimers.
Collapse
Affiliation(s)
- Simon Stellmer
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Goulven Quéméner
- JILA, University of Colorado,
Boulder, CO 80309-0440, United States
| | - Paul S. Julienne
- Joint Quantum Institute, NIST
and the University of Maryland, Gaithersburg, Maryland 20899-8423,
United States
| |
Collapse
|
27
|
Augustovičová L, Soldán P. Ab initio properties of MgAlk (Alk = Li, Na, K, Rb, Cs). J Chem Phys 2012; 136:084311. [PMID: 22380046 DOI: 10.1063/1.3690459] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High level ab initio calculations are performed on the ground electronic state of diatomic molecules MgAlk (Alk = Li, Na, K, Rb, Cs). Potential energy curves and dipole moment functions are determined making use of the single-reference unrestricted and restricted coupled-cluster methods with large basis sets. Basic spectroscopic properties of the ground electronic states are derived from ro-vibrational bound state calculations.
Collapse
Affiliation(s)
- L Augustovičová
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| | | |
Collapse
|
28
|
Brue DA, Hutson JM. Magnetically tunable Feshbach resonances in ultracold Li-Yb mixtures. PHYSICAL REVIEW LETTERS 2012; 108:043201. [PMID: 22400838 DOI: 10.1103/physrevlett.108.043201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/25/2011] [Indexed: 05/31/2023]
Abstract
We investigate the possibility of forming Li+Yb ultracold molecules by magnetoassociation in mixtures of ultracold atoms. We find that magnetically tunable Feshbach resonances exist, but are extremely narrow for even-mass ytterbium isotopes, which all have zero spin. For odd-mass Yb isotopes, however, there is a new mechanism due to hyperfine coupling between the electron spin and the Yb nuclear magnetic moment. This mechanism produces Feshbach resonances for fermionic Yb isotopes that can be more than 2 orders of magnitude larger than for the bosonic counterparts.
Collapse
Affiliation(s)
- Daniel A Brue
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| | | |
Collapse
|
29
|
Kotochigova S, Petrov A, Linnik M, Kłos J, Julienne PS. Ab initio properties of Li-group-II molecules for ultracold matter studies. J Chem Phys 2011; 135:164108. [DOI: 10.1063/1.3653974] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
30
|
Hara H, Takasu Y, Yamaoka Y, Doyle JM, Takahashi Y. Quantum degenerate mixtures of alkali and alkaline-earth-like atoms. PHYSICAL REVIEW LETTERS 2011; 106:205304. [PMID: 21668241 DOI: 10.1103/physrevlett.106.205304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/22/2011] [Indexed: 05/30/2023]
Abstract
We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkaline-earth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope ⁶Li with evaporatively cooled bosonic ¹⁷⁴Yb and, separately, fermionic ¹⁷³Yb. Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a(⁶Li-¹⁷⁴Yb)| = 1.0 ± 0.2 nm and |a(⁶Li-¹⁷³Yb)| = 0.9 ± 0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.
Collapse
Affiliation(s)
- Hideaki Hara
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
31
|
Ivanov VV, Khramov A, Hansen AH, Dowd WH, Münchow F, Jamison AO, Gupta S. Sympathetic cooling in an optically trapped mixture of alkali and spin-singlet atoms. PHYSICAL REVIEW LETTERS 2011; 106:153201. [PMID: 21568554 DOI: 10.1103/physrevlett.106.153201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Indexed: 05/30/2023]
Abstract
We report on the realization of a stable mixture of ultracold lithium and ytterbium atoms confined in a far-off-resonance optical dipole trap. We observe sympathetic cooling of 6Li by 174Yb and extract the s-wave scattering length magnitude |a(6Li-174Yb)|=(13±3)a0 from the rate of interspecies thermalization. Using forced evaporative cooling of 174Yb, we achieve reduction of the 6Li temperature to below the Fermi temperature, purely through interspecies sympathetic cooling.
Collapse
Affiliation(s)
- Vladyslav V Ivanov
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Münchow F, Bruni C, Madalinski M, Görlitz A. Two-photon photoassociation spectroscopy of heteronuclear YbRb. Phys Chem Chem Phys 2011; 13:18734-7. [DOI: 10.1039/c1cp21219b] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Skomorowski W, González-Martínez ML, Moszynski R, Hutson JM. Cold collisions of an open-shell S-state atom with a 2Π molecule: N(4S) colliding with OH in a magnetic field. Phys Chem Chem Phys 2011; 13:19077-88. [DOI: 10.1039/c1cp21200a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|