1
|
ANDO S, EKANGER N, HORIUCHI S, KOSHIO Y. Diffuse neutrino background from past core collapse supernovae. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:460-479. [PMID: 38072453 PMCID: PMC10822721 DOI: 10.2183/pjab.99.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 12/18/2023]
Abstract
Core collapse supernovae are among the most powerful explosions in the Universe, which emit thermal neutrinos that carry away most of the gravitational binding energy released. These neutrinos produce a diffuse supernova neutrino background (DSNB), which is one of the largest energy budgets among all radiation backgrounds. Detecting the DSNB is an important goal of modern high-energy astrophysics and particle physics, which provides valuable insights into core collapse modeling, neutrino physics, and cosmic supernova rate history. In this review, the key ingredients of DSNB calculation and what can be learned from future detections, including black hole formation and non-standard neutrino interactions are discussed. Moreover, an overview of the latest updates in neutrino experiments, which could lead to the detection of the DSNB in the next decade, is provided. With the promise of this breakthrough discovery on the horizon, the study of DSNB has great potential to further our understanding of the Universe.
Collapse
Affiliation(s)
- Shin’ichiro ANDO
- GRAPPA Institute, University of Amsterdam, Amsterdam, The Netherlands
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba, Japan
| | - Nick EKANGER
- Center for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, Virginia, U.S.A
| | - Shunsaku HORIUCHI
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba, Japan
- Center for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, Virginia, U.S.A
| | - Yusuke KOSHIO
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Physics, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Jamieson B, Stubbs M, Ramanna S, Walker J, Prouse N, Akutsu R, de Perio P, Fedorko W. Using machine learning to improve neutron identification in water Cherenkov detectors. Front Big Data 2022; 5:978857. [PMID: 36247971 PMCID: PMC9561466 DOI: 10.3389/fdata.2022.978857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Water Cherenkov detectors like Super-Kamiokande, and the next generation Hyper-Kamiokande are adding gadolinium to their water to improve the detection of neutrons. By detecting neutrons in addition to the leptons in neutrino interactions, an improved separation between neutrino and anti-neutrinos, and reduced backgrounds for proton decay searches can be expected. The neutron signal itself is still small and can be confused with muon spallation and other background sources. In this paper, machine learning techniques are employed to optimize the neutron capture detection capability in the new intermediate water Cherenkov detector (IWCD) for Hyper-K. In particular, boosted decision tree (XGBoost), graph convolutional network (GCN), and dynamic graph convolutional neural network (DGCNN) models are developed and benchmarked against a statistical likelihood-based approach, achieving up to a 10% increase in classification accuracy. Characteristic features are also engineered from the datasets and analyzed using SHAP (SHapley Additive exPlanations) to provide insight into the pivotal factors influencing event type outcomes. The dataset used in this research consisted of roughly 1.6 million simulated particle gun events, divided nearly evenly between neutron capture and a background electron source. The current samples used for training are representative only, and more realistic samples will need to be made for the analyses of real data. The current class split is 50/50, but there is expected to be a difference between the classes in the real experiment, and one might consider using resampling techniques to address the issue of serious imbalances in the class distribution in real data if necessary.
Collapse
Affiliation(s)
- Blair Jamieson
- Physics Department, University of Winnipeg, Winnipeg, MB, Canada
- *Correspondence: Blair Jamieson
| | - Matt Stubbs
- Applied Computer Science Department, University of Winnipeg, Winnipeg, MB, Canada
| | - Sheela Ramanna
- Applied Computer Science Department, University of Winnipeg, Winnipeg, MB, Canada
| | - John Walker
- Physics Department, University of Winnipeg, Winnipeg, MB, Canada
- Science Division, TRIUMF, Vancouver, BC, Canada
| | - Nick Prouse
- Science Division, TRIUMF, Vancouver, BC, Canada
| | | | - Patrick de Perio
- Science Division, TRIUMF, Vancouver, BC, Canada
- Kavli IPMU (WPI), UTIAS, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
3
|
Abe K, Bronner C, Hayato Y, Hiraide K, Ikeda M, Imaizumi S, Kameda J, Kanemura Y, Kataoka Y, Miki S, Miura M, Moriyama S, Nagao Y, Nakahata M, Nakayama S, Okada T, Okamoto K, Orii A, Pronost G, Sekiya H, Shiozawa M, Sonoda Y, Suzuki Y, Takeda A, Takemoto Y, Takenaka A, Tanaka H, Watanabe S, Yano T, Han S, Kajita T, Okumura K, Tashiro T, Xia J, Megias G, Bravo-Berguño D, Labarga L, Marti L, Zaldivar B, Pointon B, Blaszczyk F, Kearns E, Raaf J, Stone J, Wan L, Wester T, Bian J, Griskevich N, Kropp W, Locke S, Mine S, Smy M, Sobel H, Takhistov V, Hill J, Kim J, Lim I, Park R, Bodur B, Scholberg K, Walter C, Cao S, Bernard L, Coffani A, Drapier O, El Hedri S, Giampaolo A, Gonin M, Mueller T, Paganini P, Quilain B, Ishizuka T, Nakamura T, Jang J, Learned J, Anthony L, Martin D, Scott M, Sztuc A, Uchida Y, Berardi V, Catanesi M, Radicioni E, Calabria N, Machado L, De Rosa G, Collazuol G, Iacob F, Lamoureux M, Mattiazzi M, Ospina N, Ludovici L, Maekawa Y, Nishimura Y, Friend M, Hasegawa T, Ishida T, Kobayashi T, Jakkapu M, Matsubara T, et alAbe K, Bronner C, Hayato Y, Hiraide K, Ikeda M, Imaizumi S, Kameda J, Kanemura Y, Kataoka Y, Miki S, Miura M, Moriyama S, Nagao Y, Nakahata M, Nakayama S, Okada T, Okamoto K, Orii A, Pronost G, Sekiya H, Shiozawa M, Sonoda Y, Suzuki Y, Takeda A, Takemoto Y, Takenaka A, Tanaka H, Watanabe S, Yano T, Han S, Kajita T, Okumura K, Tashiro T, Xia J, Megias G, Bravo-Berguño D, Labarga L, Marti L, Zaldivar B, Pointon B, Blaszczyk F, Kearns E, Raaf J, Stone J, Wan L, Wester T, Bian J, Griskevich N, Kropp W, Locke S, Mine S, Smy M, Sobel H, Takhistov V, Hill J, Kim J, Lim I, Park R, Bodur B, Scholberg K, Walter C, Cao S, Bernard L, Coffani A, Drapier O, El Hedri S, Giampaolo A, Gonin M, Mueller T, Paganini P, Quilain B, Ishizuka T, Nakamura T, Jang J, Learned J, Anthony L, Martin D, Scott M, Sztuc A, Uchida Y, Berardi V, Catanesi M, Radicioni E, Calabria N, Machado L, De Rosa G, Collazuol G, Iacob F, Lamoureux M, Mattiazzi M, Ospina N, Ludovici L, Maekawa Y, Nishimura Y, Friend M, Hasegawa T, Ishida T, Kobayashi T, Jakkapu M, Matsubara T, Nakadaira T, Nakamura K, Oyama Y, Sakashita K, Sekiguchi T, Tsukamoto T, Kotsar Y, Nakano Y, Ozaki H, Shiozawa T, Suzuki A, Takeuchi Y, Yamamoto S, Ali A, Ashida Y, Feng J, Hirota S, Kikawa T, Mori M, Nakaya T, Wendell R, Yasutome K, Fernandez P, McCauley N, Mehta P, Tsui K, Fukuda Y, Itow Y, Menjo H, Niwa T, Sato K, Tsukada M, Lagoda J, Lakshmi S, Mijakowski P, Zalipska J, Jiang J, Jung C, Vilela C, Wilking M, Yanagisawa C, Hagiwara K, Harada M, Horai T, Ishino H, Ito S, Kitagawa H, Koshio Y, Ma W, Piplani N, Sakai S, Barr G, Barrow D, Cook L, Goldsack A, Samani S, Wark D, Nova F, Boschi T, Di Lodovico F, Gao J, Migenda J, Taani M, Zsoldos S, Yang J, Jenkins S, Malek M, McElwee J, Stone O, Thiesse M, Thompson L, Okazawa H, Kim S, Seo J, Yu I, Nishijima K, Koshiba M, Iwamoto K, Nakagiri K, Nakajima Y, Ogawa N, Yokoyama M, Martens K, Vagins M, Kuze M, Izumiyama S, Yoshida T, Inomoto M, Ishitsuka M, Ito H, Kinoshita T, Matsumoto R, Ohta K, Shinoki M, Suganuma T, Ichikawa A, Nakamura K, Martin J, Tanaka H, Towstego T, Akutsu R, Gousy-Leblanc V, Hartz M, Konaka A, de Perio P, Prouse N, Chen S, Xu B, Zhang Y, Posiadala-Zezula M, Hadley D, O’Flaherty M, Richards B, Jamieson B, Walker J, Minamino A, Okamoto K, Pintaudi G, Sano S, Sasaki R. Diffuse supernova neutrino background search at Super-Kamiokande. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.104.122002] [Show More Authors] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Aguilar-Arevalo AA, Brown BC, Bugel L, Cheng G, Conrad JM, Cooper RL, Dharmapalan R, Diaz A, Djurcic Z, Finley DA, Ford R, Garcia FG, Garvey GT, Grange J, Huang EC, Huelsnitz W, Ignarra C, Johnson RA, Karagiorgi G, Katori T, Kobilarcik T, Louis WC, Mariani C, Marsh W, Mills GB, Mirabal J, Monroe J, Moore CD, Mousseau J, Nienaber P, Nowak J, Osmanov B, Pavlovic Z, Perevalov D, Ray H, Roe BP, Russell AD, Shaevitz MH, Spitz J, Stancu I, Tayloe R, Thornton RT, Tzanov M, Van de Water RG, White DH, Wickremasinghe DA, Zimmerman ED. Significant Excess of Electronlike Events in the MiniBooNE Short-Baseline Neutrino Experiment. PHYSICAL REVIEW LETTERS 2018; 121:221801. [PMID: 30547637 DOI: 10.1103/physrevlett.121.221801] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/28/2018] [Indexed: 06/09/2023]
Abstract
The MiniBooNE experiment at Fermilab reports results from an analysis of ν_{e} appearance data from 12.84×10^{20} protons on target in neutrino mode, an increase of approximately a factor of 2 over previously reported results. A ν_{e} charged-current quasielastic event excess of 381.2±85.2 events (4.5σ) is observed in the energy range 200<E_{ν}^{QE}<1250 MeV. Combining these data with the ν[over ¯]_{e} appearance data from 11.27×10^{20} protons on target in antineutrino mode, a total ν_{e} plus ν[over ¯]_{e} charged-current quasielastic event excess of 460.5±99.0 events (4.7σ) is observed. If interpreted in a two-neutrino oscillation model, ν_{μ}→ν_{e}, the best oscillation fit to the excess has a probability of 21.1%, while the background-only fit has a χ^{2} probability of 6×10^{-7} relative to the best fit. The MiniBooNE data are consistent in energy and magnitude with the excess of events reported by the Liquid Scintillator Neutrino Detector (LSND), and the significance of the combined LSND and MiniBooNE excesses is 6.0σ. A two-neutrino oscillation interpretation of the data would require at least four neutrino types and indicate physics beyond the three neutrino paradigm. Although the data are fit with a two-neutrino oscillation model, other models may provide better fits to the data.
Collapse
Affiliation(s)
- A A Aguilar-Arevalo
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - B C Brown
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - L Bugel
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - G Cheng
- Columbia University, New York, New York 10027, USA
| | - J M Conrad
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R L Cooper
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- New Mexico State University, Las Cruces, New Mexico 88003, USA
| | - R Dharmapalan
- University of Alabama, Tuscaloosa, Alabama 35487, USA
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - A Diaz
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Z Djurcic
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - D A Finley
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - R Ford
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - F G Garcia
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - G T Garvey
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Grange
- University of Florida, Gainesville, Florida 32611, USA
| | - E-C Huang
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - W Huelsnitz
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Ignarra
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R A Johnson
- University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - G Karagiorgi
- Columbia University, New York, New York 10027, USA
| | - T Katori
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Queen Mary University of London, London E1 4NS, United Kingdom
| | - T Kobilarcik
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - W C Louis
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Mariani
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - W Marsh
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - G B Mills
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Mirabal
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Monroe
- Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
| | - C D Moore
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - J Mousseau
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - P Nienaber
- Saint Mary's University of Minnesota, Winona, Minnesota 55987, USA
| | - J Nowak
- Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - B Osmanov
- University of Florida, Gainesville, Florida 32611, USA
| | - Z Pavlovic
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - D Perevalov
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - H Ray
- University of Florida, Gainesville, Florida 32611, USA
| | - B P Roe
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A D Russell
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - M H Shaevitz
- Columbia University, New York, New York 10027, USA
| | - J Spitz
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - I Stancu
- University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - R Tayloe
- Indiana University, Bloomington, Indiana 47405, USA
| | - R T Thornton
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M Tzanov
- University of Colorado, Boulder, Colorado 80309, USA
- Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - R G Van de Water
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - D H White
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | - E D Zimmerman
- University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
5
|
Nakamura SX, Kamano H, Hayato Y, Hirai M, Horiuchi W, Kumano S, Murata T, Saito K, Sakuda M, Sato T, Suzuki Y. Towards a unified model of neutrino-nucleus reactions for neutrino oscillation experiments. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:056301. [PMID: 28164864 DOI: 10.1088/1361-6633/aa5e6c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A precise description of neutrino-nucleus reactions will play a key role in addressing fundamental questions such as the leptonic CP violation and the neutrino mass hierarchy through analyzing data from next-generation neutrino oscillation experiments. The neutrino energy relevant to the neutrino-nucleus reactions spans a broad range and, accordingly, the dominant reaction mechanism varies across the energy region from quasi-elastic scattering through nucleon resonance excitations to deep inelastic scattering. This corresponds to transitions of the effective degree of freedom for theoretical description from nucleons through meson-baryon to quarks. The main purpose of this review is to report our recent efforts towards a unified description of the neutrino-nucleus reactions over the wide energy range; recent overall progress in the field is also sketched. Starting with an overview of the current status of neutrino-nucleus scattering experiments, we formulate the cross section to be commonly used for the reactions over all the energy regions. A description of the neutrino-nucleon reactions follows and, in particular, a dynamical coupled-channels model for meson productions in and beyond the [Formula: see text](1232) region is discussed in detail. We then discuss the neutrino-nucleus reactions, putting emphasis on our theoretical approaches. We start the discussion with electroweak processes in few-nucleon systems studied with the correlated Gaussian method. Then we describe quasi-elastic scattering with nuclear spectral functions, and meson productions with a [Formula: see text]-hole model. Nuclear modifications of the parton distribution functions determined through a global analysis are also discussed. Finally, we discuss issues to be addressed for future developments.
Collapse
Affiliation(s)
- S X Nakamura
- Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abe K, Adam J, Aihara H, Akiri T, Andreopoulos C, Aoki S, Ariga A, Ariga T, Assylbekov S, Autiero D, Barbi M, Barker G, Barr G, Bass M, Batkiewicz M, Bay F, Bentham S, Berardi V, Berger B, Berkman S, Bertram I, Bhadra S, Blaszczyk F, Blondel A, Bojechko C, Bordoni S, Boyd S, Brailsford D, Bravar A, Bronner C, Buchanan N, Calland R, Caravaca Rodríguez J, Cartwright S, Castillo R, Catanesi M, Cervera A, Cherdack D, Christodoulou G, Clifton A, Coleman J, Coleman S, Collazuol G, Connolly K, Cremonesi L, Dabrowska A, Danko I, Das R, Davis S, de Perio P, De Rosa G, Dealtry T, Dennis S, Densham C, Dewhurst D, Di Lodovico F, Di Luise S, Drapier O, Duboyski T, Duffy K, Dufour F, Dumarchez J, Dytman S, Dziewiecki M, Emery-Schrenk S, Ereditato A, Escudero L, Finch A, Fiorentini Aguirre G, Friend M, Fujii Y, Fukuda Y, Furmanski A, Galymov V, Gaudin A, Giffin S, Giganti C, Gilje K, Goeldi D, Golan T, Gomez-Cadenas J, Gonin M, Grant N, Gudin D, Hadley D, Haegel L, Haesler A, Haigh M, Hamilton P, Hansen D, Hara T, Hartz M, Hasegawa T, Hastings N, Hayato Y, Hearty C, Helmer R, Hierholzer M, Hignight J, Hillairet A, et alAbe K, Adam J, Aihara H, Akiri T, Andreopoulos C, Aoki S, Ariga A, Ariga T, Assylbekov S, Autiero D, Barbi M, Barker G, Barr G, Bass M, Batkiewicz M, Bay F, Bentham S, Berardi V, Berger B, Berkman S, Bertram I, Bhadra S, Blaszczyk F, Blondel A, Bojechko C, Bordoni S, Boyd S, Brailsford D, Bravar A, Bronner C, Buchanan N, Calland R, Caravaca Rodríguez J, Cartwright S, Castillo R, Catanesi M, Cervera A, Cherdack D, Christodoulou G, Clifton A, Coleman J, Coleman S, Collazuol G, Connolly K, Cremonesi L, Dabrowska A, Danko I, Das R, Davis S, de Perio P, De Rosa G, Dealtry T, Dennis S, Densham C, Dewhurst D, Di Lodovico F, Di Luise S, Drapier O, Duboyski T, Duffy K, Dufour F, Dumarchez J, Dytman S, Dziewiecki M, Emery-Schrenk S, Ereditato A, Escudero L, Finch A, Fiorentini Aguirre G, Friend M, Fujii Y, Fukuda Y, Furmanski A, Galymov V, Gaudin A, Giffin S, Giganti C, Gilje K, Goeldi D, Golan T, Gomez-Cadenas J, Gonin M, Grant N, Gudin D, Hadley D, Haegel L, Haesler A, Haigh M, Hamilton P, Hansen D, Hara T, Hartz M, Hasegawa T, Hastings N, Hayato Y, Hearty C, Helmer R, Hierholzer M, Hignight J, Hillairet A, Himmel A, Hiraki T, Hirota S, Holeczek J, Horikawa S, Huang K, Ichikawa A, Ieki K, Ieva M, Ikeda M, Imber J, Insler J, Irvine T, Ishida T, Ishii T, Ives S, Iwai E, Iwamoto K, Iyogi K, Izmaylov A, Jacob A, Jamieson B, Johnson R, Johnson S, Jo J, Jonsson P, Jung C, Kabirnezhad M, Kaboth A, Kajita T, Kakuno H, Kameda J, Kanazawa Y, Karlen D, Karpikov I, Katori T, Kearns E, Khabibullin M, Khotjantsev A, Kielczewska D, Kikawa T, Kilinski A, Kim J, King S, Kisiel J, Kitching P, Kobayashi T, Koch L, Kolaceke A, Konaka A, Kormos L, Korzenev A, Koseki K, Koshio Y, Kreslo I, Kropp W, Kubo H, Kudenko Y, Kumaratunga S, Kurjata R, Kutter T, Lagoda J, Laihem K, Lamont I, Larkin E, Laveder M, Lawe M, Lazos M, Lee K, Licciardi C, Lindner T, Lister C, Litchfield R, Longhin A, Ludovici L, Macaire M, Magaletti L, Mahn K, Malek M, Manly S, Marino A, Marteau J, Martin J, Martynenko S, Maruyama T, Marzec J, Mathie E, Matveev V, Mavrokoridis K, Mazzucato E, McCarthy M, McCauley N, McFarland K, McGrew C, Mefodiev A, Metelko C, Mezzetto M, Mijakowski P, Miller C, Minamino A, Mineev O, Mine S, Missert A, Miura M, Monfregola L, Moriyama S, Mueller T, Murakami A, Murdoch M, Murphy S, Myslik J, Nagasaki T, Nakadaira T, Nakahata M, Nakai T, Nakamura K, Nakayama S, Nakaya T, Nakayoshi K, Nantais C, Naples D, Nielsen C, Nirkko M, Nishikawa K, Nishimura Y, Nowak J, O’Keeffe H, Ohta R, Okumura K, Okusawa T, Oryszczak W, Oser S, Ovsyannikova T, Owen R, Oyama Y, Palladino V, Palomino J, Paolone V, Payne D, Pearce G, Perevozchikov O, Perkin J, Petrov Y, Pickard L, Pinzon Guerra E, Pistillo C, Plonski P, Poplawska E, Popov B, Posiadala-Zezula M, Poutissou JM, Poutissou R, Przewlocki P, Quilain B, Radicioni E, Ratoff P, Ravonel M, Rayner M, Redij A, Reeves M, Reinherz-Aronis E, Riccio C, Retiere F, Robert A, Rodrigues P, Rojas P, Rondio E, Roth S, Rubbia A, Ruterbories D, Sacco R, Sakashita K, Sánchez F, Sato F, Scantamburlo E, Scholberg K, Schoppmann S, Schwehr J, Scott M, Seiya Y, Sekiguchi T, Sekiya H, Sgalaberna D, Shaker F, Shiozawa M, Short S, Shustrov Y, Sinclair P, Smith B, Smith R, Smy M, Sobczyk J, Sobel H, Sorel M, Southwell L, Stamoulis P, Steinmann J, Still B, Suda Y, Suzuki A, Suzuki K, Suzuki S, Suzuki Y, Szeglowski T, Tacik R, Tada M, Takahashi S, Takeda A, Takeuchi Y, Tanaka H, Tanaka H, Tanaka M, Taylor I, Terhorst D, Terri R, Thompson L, Thorley A, Tobayama S, Toki W, Tomura T, Totsuka Y, Touramanis C, Tsukamoto T, Tzanov M, Uchida Y, Ueno K, Vacheret A, Vagins M, Vasseur G, Wachala T, Waldron A, Walter C, Wark D, Wascko M, Weber A, Wendell R, Wilkes R, Wilking M, Wilkinson C, Williamson Z, Wilson J, Wilson R, Wongjirad T, Yamada Y, Yamamoto K, Yanagisawa C, Yano T, Yen S, Yershov N, Yokoyama M, Yuan T, Yu M, Zalewska A, Zalipska J, Zambelli L, Zaremba K, Ziembicki M, Zimmerman E, Zito M, Żmuda J. Measurement of the neutrino-oxygen neutral-current interaction cross section by observing nuclear deexcitationγrays. Int J Clin Exp Med 2014. [DOI: 10.1103/physrevd.90.072012] [Show More Authors] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|