1
|
Liu Q, Lu D, Chen M. Structure and dynamics of warm dense aluminum: a molecular dynamics study with density functional theory and deep potential. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:144002. [PMID: 31739300 DOI: 10.1088/1361-648x/ab5890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We perform a systematic study on the structure and dynamics of warm dense aluminum (Al) at temperatures ranging from 0.5 to 5.0 eV with molecular dynamics utilizing both density functional theory (DFT) and the deep potential (DP) method. On one hand, unlike the Thomas-Fermi kinetic energy density functional (KEDF), we find that the orbital-free DFT method with the Wang-Teter non-local KEDF yields properties of warm dense Al that agree well with the Kohn-Sham DFT method, enabling accurate orbital-free DFT simulations of warm dense Al at relatively low temperatures. On the other hand, the DP method constructs a deep neural network that has a high accuracy in reproducing short- and long-ranged properties of warm dense Al when compared to the DFT methods. The DP method is orders of magnitudes faster than DFT and is well-suited for simulating large systems and long trajectories to yield accurate properties of warm dense Al. Our results suggest that the combination of DFT methods and the DP model is a powerful tool for accurately and efficiently simulating warm dense matter.
Collapse
Affiliation(s)
- Qianrui Liu
- Center for Applied Physics and Technology, HEDPS, College of Engineering and School of Physics, Peking University, Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
2
|
Albert F, Lemos N, Shaw JL, Pollock BB, Goyon C, Schumaker W, Saunders AM, Marsh KA, Pak A, Ralph JE, Martins JL, Amorim LD, Falcone RW, Glenzer SH, Moody JD, Joshi C. Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses. PHYSICAL REVIEW LETTERS 2017; 118:134801. [PMID: 28409970 DOI: 10.1103/physrevlett.118.134801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Indexed: 06/07/2023]
Abstract
We investigate a new regime for betatron x-ray emission that utilizes kilojoule-class picosecond lasers to drive wakes in plasmas. When such laser pulses with intensities of ∼5×10^{18} W/cm^{2} are focused into plasmas with electron densities of ∼1×10^{19} cm^{-3}, they undergo self-modulation and channeling, which accelerates electrons up to 200 MeV energies and causes those electrons to emit x rays. The measured x-ray spectra are fit with a synchrotron spectrum with a critical energy of 10-20 keV, and 2D particle-in-cell simulations were used to model the acceleration and radiation of the electrons in our experimental conditions.
Collapse
Affiliation(s)
- F Albert
- Lawrence Livermore National Laboratory, NIF and Photon Sciences, 7000 East Avenue, Livermore, California 94550, USA
| | - N Lemos
- Lawrence Livermore National Laboratory, NIF and Photon Sciences, 7000 East Avenue, Livermore, California 94550, USA
- Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA
| | - J L Shaw
- Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA
| | - B B Pollock
- Lawrence Livermore National Laboratory, NIF and Photon Sciences, 7000 East Avenue, Livermore, California 94550, USA
| | - C Goyon
- Lawrence Livermore National Laboratory, NIF and Photon Sciences, 7000 East Avenue, Livermore, California 94550, USA
| | - W Schumaker
- SLAC National Accelerator Laboratory, Stanford, California 94309, USA
| | - A M Saunders
- Lawrence Berkeley National Laboratory and University of California Berkeley, Berkeley, California 94720, USA
| | - K A Marsh
- Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA
| | - A Pak
- Lawrence Livermore National Laboratory, NIF and Photon Sciences, 7000 East Avenue, Livermore, California 94550, USA
| | - J E Ralph
- Lawrence Livermore National Laboratory, NIF and Photon Sciences, 7000 East Avenue, Livermore, California 94550, USA
| | - J L Martins
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - L D Amorim
- Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - R W Falcone
- Lawrence Berkeley National Laboratory and University of California Berkeley, Berkeley, California 94720, USA
| | - S H Glenzer
- SLAC National Accelerator Laboratory, Stanford, California 94309, USA
| | - J D Moody
- Lawrence Livermore National Laboratory, NIF and Photon Sciences, 7000 East Avenue, Livermore, California 94550, USA
| | - C Joshi
- Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
3
|
Dorchies F, Fedorov N, Lecherbourg L. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:073106. [PMID: 26233355 DOI: 10.1063/1.4926348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%-20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.
Collapse
Affiliation(s)
- F Dorchies
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, Talence F-33405, France
| | - N Fedorov
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, Talence F-33405, France
| | - L Lecherbourg
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, Talence F-33405, France
| |
Collapse
|
4
|
Denoeud A, Benuzzi-Mounaix A, Ravasio A, Dorchies F, Leguay PM, Gaudin J, Guyot F, Brambrink E, Koenig M, Le Pape S, Mazevet S. Metallization of warm dense SiO(2) studied by XANES spectroscopy. PHYSICAL REVIEW LETTERS 2014; 113:116404. [PMID: 25259992 DOI: 10.1103/physrevlett.113.116404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 06/03/2023]
Abstract
We investigate the evolution of the electronic structure of fused silica in a dense plasma regime using time-resolved x-ray absorption spectroscopy. We use a nanosecond (ns) laser beam to generate a strong uniform shock wave in the sample and a picosecond (ps) pulse to produce a broadband x-ray source near the Si K edge. By varying the delay between the two laser beams and the intensity of the ns beam, we explore a large thermodynamical domain with densities varying from 1 to 5 g/cm^{3} and temperatures up to 5 eV. In contrast to normal conditions where silica is a well-known insulator with a wide band gap of 8.9 eV, we find that shocked silica exhibits a pseudogap as a semimetal throughout this thermodynamical domain. This is in quantitative agreement with density functional theory predictions performed using the generalized gradient approximation.
Collapse
Affiliation(s)
- A Denoeud
- Laboratoire pour l'Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France
| | - A Benuzzi-Mounaix
- Laboratoire pour l'Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France and LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 92195 Meudon, France
| | - A Ravasio
- Laboratoire pour l'Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France and LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 92195 Meudon, France
| | - F Dorchies
- Centre Lasers Intenses et Applications (CELIA), CNRS, CEA, Université Bordeaux 1, 33405 Talence, France
| | - P M Leguay
- Centre Lasers Intenses et Applications (CELIA), CNRS, CEA, Université Bordeaux 1, 33405 Talence, France
| | - J Gaudin
- Centre Lasers Intenses et Applications (CELIA), CNRS, CEA, Université Bordeaux 1, 33405 Talence, France
| | - F Guyot
- Institut de Minéralogie et de Physique des Milieux Condensés (IMPMC), MNHN, CNRS, UPMC, IRD, Sorbonne Universités, 75005 Paris, France
| | - E Brambrink
- Laboratoire pour l'Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France
| | - M Koenig
- Laboratoire pour l'Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France
| | - S Le Pape
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S Mazevet
- LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 92195 Meudon, France and Département de Physique Théorique et Appliquée, CEA, 91680 Bruyère-le-Chatel, France
| |
Collapse
|
5
|
Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments. Sci Rep 2014; 4:4724. [PMID: 24740172 PMCID: PMC3989553 DOI: 10.1038/srep04724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/02/2014] [Indexed: 11/08/2022] Open
Abstract
The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called "molecular movie" within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.
Collapse
|
6
|
Leguay PM, Lévy A, Chimier B, Deneuville F, Descamps D, Fourment C, Goyon C, Hulin S, Petit S, Peyrusse O, Santos JJ, Combis P, Holst B, Recoules V, Renaudin P, Videau L, Dorchies F. Ultrafast short-range disordering of femtosecond-laser-heated warm dense aluminum. PHYSICAL REVIEW LETTERS 2013; 111:245004. [PMID: 24483671 DOI: 10.1103/physrevlett.111.245004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Indexed: 06/03/2023]
Abstract
We have probed, with time-resolved x-ray absorption near-edge spectroscopy (XANES), a femtosecond-laser-heated aluminum foil with fluences up to 1 J/cm2. The spectra reveal a loss of the short-range order in a few picoseconds. This time scale is compared with the electron-ion equilibration time, calculated with a two-temperature model. Hydrodynamic simulations shed light on complex features that affect the foil dynamics, including progressive density change from solid to liquid (∼10 ps). In this density range, quantum molecular dynamics simulations indicate that XANES is a relevant probe of the ionic temperature.
Collapse
Affiliation(s)
- P M Leguay
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence, France
| | - A Lévy
- Ecole Polytechnique, LULI (Laboratoire d'Utilisation des Lasers Intenses), UMR 7605, F-91128 Palaiseau, France
| | - B Chimier
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence, France
| | - F Deneuville
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence, France
| | - D Descamps
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence, France
| | - C Fourment
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence, France
| | - C Goyon
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence, France
| | - S Hulin
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence, France
| | - S Petit
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence, France
| | - O Peyrusse
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence, France
| | - J J Santos
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence, France
| | - P Combis
- CEA-DAM-DIF, F-91297 Arpajon, France
| | - B Holst
- CEA-DAM-DIF, F-91297 Arpajon, France
| | | | | | - L Videau
- CEA-DAM-DIF, F-91297 Arpajon, France
| | - F Dorchies
- Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence, France
| |
Collapse
|