1
|
Zhou J, Wang X. Classical multielectron model atoms with optimized ionization energies. OPTICS EXPRESS 2022; 30:16802-16811. [PMID: 36221515 DOI: 10.1364/oe.457634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
We propose a method to build stable classical multielectron model atoms with the ionization energies optimized to experimental values. Based on the work of Kirschbaum and Wilets [Phys. Rev. A21, 834 (1980)10.1103/PhysRevA.21.834], which introduces auxiliary potentials to simulate quantum mechanical effects, we implement a genetic algorithm to optimize the related parameters such that the model atoms yield correct (first few) ionization energies. Ionization-energy optimized model atoms automatically show separated electron shells, consistent to normal expectations. Numerical examples are given to demonstrate the importance of correct ionization energies, as well as new perspectives to double ionization processes.
Collapse
|
2
|
Maxwell AS, Faria CFDM. Controlling Below-Threshold Nonsequential Double Ionization via Quantum Interference. PHYSICAL REVIEW LETTERS 2016; 116:143001. [PMID: 27104701 DOI: 10.1103/physrevlett.116.143001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 06/05/2023]
Abstract
We show through simulation that quantum interference in nonsequential double ionization can be used to control the recollision excitation with subsequent ionization (RESI) mechanism. This includes the shape, localization, and symmetry of RESI electron-momentum distributions, which may be shifted from a correlated to an anticorrelated distribution or vice versa, far below the direct ionization threshold intensity. As a testing ground, we reproduce recent experimental results by employing specific coherent superpositions of excitation channels. We examine two types of interference, from electron indistinguishability and intracycle events, and from different excitation channels. These effects survive focal averaging and transverse-momentum integration.
Collapse
Affiliation(s)
- A S Maxwell
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
3
|
Ben S, Wang T, Xu T, Guo J, Liu X. Nonsequential double ionization channels control of Ar with few-cycle elliptically polarized laser pulse by carrier-envelope-phase. OPTICS EXPRESS 2016; 24:7525-7533. [PMID: 27137041 DOI: 10.1364/oe.24.007525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The carrier-envelop-phase (CEP) dependence of nonsequential double ionization (NSDI) of atomic Ar with few-cycle elliptically polarized laser pulse is investigated using 2D classical ensemble method. We distinguish two particular recollision channels in NSDI, which are recollision-impact ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). We separate the RII and RESI channels according to the delay time between recollision and final double ionization. By tracing the history of the trajectories, we find the electron correlation spectra as well as the competition between the two channels are sensitively dependent on the laser field CEP. Finally, control can be achieved between the two channels by varying the CEP.
Collapse
|
4
|
Liu Y, Fu L, Ye D, Liu J, Li M, Wu C, Gong Q, Moshammer R, Ullrich J. Strong-field double ionization through sequential release from double excitation with subsequent Coulomb scattering. PHYSICAL REVIEW LETTERS 2014; 112:013003. [PMID: 24483894 DOI: 10.1103/physrevlett.112.013003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Indexed: 06/03/2023]
Abstract
We perform a triple coincidence study on differential momentum distributions of strong-field double ionization of Ar atoms in linearly polarized fields (795 nm, 45 fs, 7×10(13) W/cm2). Using a three-dimensional two-electron atomic-ensemble semiclassical model including the tunneling effect for both electrons, we retrieve differential momentum distributions and achieve a good agreement with the measurement. Ionization dynamics of the correlated electrons for the side-by-side and back-to-back emission is analyzed separately. According to the semiclassical model, we find that the doubly excited states are largely populated after the laser-assisted recollision and large amounts of double ionization dominantly takes place through sequential ionization of doubly excited states at such a low laser intensity. Compared with the Coulomb-free and Coulomb-corrected sequential tunneling models, we verify that electrons can obtain an energy as large as ∼6.5U p through Coulomb scattering in the combined laser and doubly charged ionic fields.
Collapse
Affiliation(s)
- Yunquan Liu
- Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, 100871 Beijing, China and Collaborative Innovation Center of Quantum Matter, Beijing 100871, China and Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - Libin Fu
- Center for Applied Physics and Technology, Peking University, 100084 Beijing, China and Institute of Applied Physics and Computational Mathematics, 100088 Beijing, China
| | - Difa Ye
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany and Institute of Applied Physics and Computational Mathematics, 100088 Beijing, China
| | - Jie Liu
- Center for Applied Physics and Technology, Peking University, 100084 Beijing, China and Institute of Applied Physics and Computational Mathematics, 100088 Beijing, China
| | - Min Li
- Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, 100871 Beijing, China and Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Chengyin Wu
- Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, 100871 Beijing, China and Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Qihuang Gong
- Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, 100871 Beijing, China and Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - R Moshammer
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - J Ullrich
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany and Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
| |
Collapse
|
5
|
Nguyen-Dang TT, Viau-Trudel J. Multicomponent dynamics of coupled quantum subspaces and field-induced molecular ionizations. J Chem Phys 2013; 139:244102. [PMID: 24387352 DOI: 10.1063/1.4849755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To describe successive ionization steps of a many-electron atom or molecule driven by an ultrashort, intense laser pulse, we introduce a hierarchy of successive two-subspace Feshbach partitions of the N-electron Hilbert space, and solve the partitioned time-dependent Schrödinger equation by a short-time unitary algorithm. The partitioning scheme allows one to use different level of theory to treat the many-electron dynamics in different subspaces. We illustrate the procedure on a simple two-active-electron model molecular system subjected to a few-cycle extreme Ultra-Violet (XUV) pulse to study channel-resolved photoelectron spectra as a function of the pulse's central frequency and duration. We observe how the momentum and kinetic-energy distributions of photoelectrons accompanying the formation of the molecular cation in a given electronic state (channel) change as the XUV few-cycle pulse's width is varied, from a form characteristic of an impulsive ionization regime, corresponding to the limit of a delta-function pulse, to a form characteristic of multiphoton above-threshold ionization, often associated with continuous-wave infinitely long pulse.
Collapse
|
6
|
Mauger F, Kamor A, Chandre C, Uzer T. Delayed double ionization as a signature of Hamiltonian chaos. Phys Rev E 2012; 85:066205. [PMID: 23005194 DOI: 10.1103/physreve.85.066205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Indexed: 11/07/2022]
Abstract
We analyze the dynamical processes behind delayed double ionization of atoms subjected to strong laser pulses. Using reduced models, we show that these processes are a signature of Hamiltonian chaos which results from the competition between the laser field and the Coulomb attraction to the nucleus. In particular, we exhibit the paramount role of the unstable manifold of selected periodic orbits which lead to a delay in these double ionizations. Among delayed double ionizations, we consider the case of recollision excitation with subsequent ionization (RESI) and, as a hallmark of this mechanism, we predict oscillations in the ratio of RESI to double ionization yields versus laser intensity. We discuss the significance of the dimensionality of the reduced models for the analysis of the dynamical processes behind delayed double ionization.
Collapse
Affiliation(s)
- F Mauger
- Centre de Physique Théorique, CNRS-Aix-Marseille Université, Campus de Luminy, Case 907, F-13288 Marseille cedex 09, France
| | | | | | | |
Collapse
|