1
|
Tóth G, Polónyi G, Hebling J. Tilted pulse front pumping techniques for efficient terahertz pulse generation. LIGHT, SCIENCE & APPLICATIONS 2023; 12:256. [PMID: 37872176 PMCID: PMC10593827 DOI: 10.1038/s41377-023-01293-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023]
Abstract
Optical rectification of femtosecond laser pulses has emerged as the dominant technique for generating single- and few-cycle terahertz (THz) pulses. The advent of the tilted pulse front pumping (TPFP) velocity matching technique, proposed and implemented two decades ago, has ushered in significant advancements of these THz sources, which are pivotal in the realm of THz pump-probe and material control experiments, which need THz pulses with microjoule energies and several hundred kV/cm electric field strengths. Furthermore, these THz sources are poised to play a crucial role in the realization of THz-driven particle accelerators, necessitating millijoule-level pulses with tens of MV/cm electric field strengths. TPFP has enabled the efficient velocity matching in lithium niobate crystals renowned for their extraordinary high nonlinear coefficient. Moreover, its adaptation to semiconductor THz sources has resulted in a two-hundred-times enhancement in conversion efficiency. In this comprehensive review, we present the seminal achievements of the past two decades. We expound on the conventional TPFP setup, delineate its scaling limits, and elucidate the novel generation TPFP configurations proposed to surmount these constraints, accompanied by their preliminary outcomes. Additionally, we provide an in-depth analysis of the THz absorption, refractive index, and nonlinear coefficient spectra of lithium niobate and widely used semiconductors employed as THz generators, which dictate their suitability as THz sources. We underscore the far-reaching advantages of tilted pulse front pumping, not only for LN and semiconductor-based THz sources but also for selected organic crystal-based sources and Yb-laser-pumped GaP sources, previously regarded as velocity-matched in the literature.
Collapse
Affiliation(s)
| | - Gyula Polónyi
- Szentágothai Research Centre, Pécs, 7624, Hungary
- HUN-REN-PTE High-Field Terahertz Research Group, Pécs, 7624, Hungary
| | - János Hebling
- University of Pécs, Pécs, 7624, Hungary.
- Szentágothai Research Centre, Pécs, 7624, Hungary.
- HUN-REN-PTE High-Field Terahertz Research Group, Pécs, 7624, Hungary.
| |
Collapse
|
2
|
Lei HY, Sun FZ, Wang TZ, Chen H, Wang D, Wei YY, Ma JL, Liao GQ, Li YT. Highly efficient generation of GV/m-level terahertz pulses from intense femtosecond laser-foil interactions. iScience 2022; 25:104336. [PMID: 35602940 PMCID: PMC9118729 DOI: 10.1016/j.isci.2022.104336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022] Open
Abstract
The terahertz radiation from ultraintense laser-produced plasmas has aroused increasing attention recently as a promising approach toward strong terahertz sources. Here, we present the highly efficient production of millijoule-level terahertz pulses, from the rear side of a metal foil irradiated by a 10-TW femtosecond laser pulse. By characterizing the terahertz and electron emission in combination with particle-in-cell simulations, the physical reasons behind the efficient terahertz generation are discussed. The resulting focused terahertz electric field strength reaches over 2 GV/m, which is justified by experiments on terahertz strong-field-driven nonlinearity in semiconductors. Ultraintense laser-foil interactions generate a 2.1-mJ strong terahertz pulse Nearly 1% generation efficiency originates from optimized laser-plasma conditions 2-GV/m high THz fields induce absorption bleaching and impact ionization
Collapse
Affiliation(s)
- Hong-Yi Lei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang-Zheng Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Ze Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Yu Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Long Ma
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guo-Qian Liao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Yu-Tong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Taoutioui A, Agueny H. Femtosecond Single Cycle Pulses Enhanced the Efficiency of High Order Harmonic Generation. MICROMACHINES 2021; 12:mi12060610. [PMID: 34073368 PMCID: PMC8227859 DOI: 10.3390/mi12060610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022]
Abstract
High-order harmonic generation is a nonlinear process that converts the gained energy during light-matter interaction into high-frequency radiation, thus resulting in the generation of coherent attosecond pulses in the XUV and soft x-ray regions. Here, we propose a control scheme for enhancing the efficiency of HHG process induced by an intense near-infrared (NIR) multi-cycle laser pulse. The scheme is based on introducing an infrared (IR) single-cycle pulse and exploiting its characteristic feature that manifests by a non-zero displacement effect to generate high-photon energy. The proposed scenario is numerically implemented on the basis of the time-dependent Schrödinger equation. In particular, we show that the combined pulses allow one to produce high-energy plateaus and that the harmonic cutoff is extended by a factor of 3 compared to the case with the NIR pulse alone. The emerged high-energy plateaus is understood as a result of a vast momentum transfer from the single-cycle field to the ionized electrons while travelling in the NIR field, thus leading to high-momentum electron recollisions. We also identify the role of the IR single-cycle field for controlling the directionality of the emitted electrons via the IR-field induced electron displacement effect. We further show that the emerged plateaus can be controlled by varying the relative carrier-envelope phase between the two pulses as well as the wavelengths. Our findings pave the way for an efficient control of light-matter interaction with the use of assisting femtosecond single-cycle fields.
Collapse
Affiliation(s)
- Abdelmalek Taoutioui
- Institute for Nuclear Research (ATOMKI), 4026 Debrecen, Hungary;
- Physique du Rayonnement et des Interactions Laser-Matière, Faculté des Sciences, Université Moulay Ismail, Zitoune, Meknes B.P. 11201, Morocco
| | - Hicham Agueny
- Department of Physics and Technology, University of Bergen, Allegt. 55, N-5007 Bergen, Norway
- Correspondence:
| |
Collapse
|
4
|
Jang D, Sung JH, Lee SK, Kang C, Kim KY. Generation of 0.7 mJ multicycle 15 THz radiation by phase-matched optical rectification in lithium niobate. OPTICS LETTERS 2020; 45:3617-3620. [PMID: 32630913 DOI: 10.1364/ol.393913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate efficient multicycle terahertz pulse generation at 14.6 THz from large-area lithium niobate crystals by using high-energy (up to 2 J) femtosecond Ti:sapphire laser pulses. Such terahertz radiation is produced by phase-matched optical rectification in lithium niobate. Experimentally, we achieve maximal terahertz energy of 0.71 mJ with conversion efficiency of ∼0.04%. Our experimental setup is simple and easily upscalable to produce multi-millijoule, multicycle terahertz radiation with proper lithium niobate crystals.
Collapse
|
5
|
Interference-Induced Phenomena in High-Order Harmonic Generation from Bulk Solids. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We consider a quantum mechanical model for the high-order harmonic generation in bulk solids. The bandgap is assumed to be considerably larger than the exciting photon energy. Using dipole approximation, the dynamical equations for different initial Bloch states are decoupled in the velocity gauge. Although there is no quantum mechanical interference between the time evolution of different initial states, the complete harmonic radiation results from the interference of fields emitted by all the initial (valence band) states. In particular, the suppression of the even-order harmonics can also be viewed as a consequence of this interference. The number of the observable harmonics (essentially the cutoff) is also determined by interference phenomena.
Collapse
|
6
|
Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils. Proc Natl Acad Sci U S A 2019; 116:3994-3999. [PMID: 30760584 PMCID: PMC6410825 DOI: 10.1073/pnas.1815256116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Terahertz (THz) radiation, with frequencies spanning from 0.1 to 10 THz, has long been the most underdeveloped frequency band in electromagnetic waves, mainly due to the dearth of available high-power THz sources. Although the last decades have seen a surge of electronic and optical techniques for generating intense THz radiation, all THz sources reported until now have failed to produce above-millijoule (mJ) THz pulses. We present a THz source that enables a THz pulse energy up to tens of mJ, by using an intense laser pulse to irradiate a metal foil. Ultrahigh-power terahertz (THz) radiation sources are essential for many applications, for example, THz-wave-based compact accelerators and THz control over matter. However, to date none of the THz sources reported, whether based upon large-scale accelerators or high-power lasers, have produced THz pulses with energies above the millijoule (mJ) level. Here, we report a substantial increase in THz pulse energy, as high as tens of mJ, generated by a high-intensity, picosecond laser pulse irradiating a metal foil. A further up-scaling of THz energy by a factor of ∼4 is observed when introducing preplasmas at the target-rear side. Experimental measurements and theoretical models identify the dominant THz generation mechanism to be coherent transition radiation, induced by the laser-accelerated energetic electron bunch escaping the target. Observation of THz-field-induced carrier multiplication in high-resistivity silicon is presented as a proof-of-concept application demonstration. Such an extremely high THz energy not only triggers various nonlinear dynamics in matter, but also opens up the research era of relativistic THz optics.
Collapse
|
7
|
Hareli L, Lobachinsky L, Shoulga G, Eliezer Y, Michaeli L, Bahabad A. On-the-Fly Control of High-Harmonic Generation Using a Structured Pump Beam. PHYSICAL REVIEW LETTERS 2018; 120:183902. [PMID: 29775338 DOI: 10.1103/physrevlett.120.183902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Indexed: 06/08/2023]
Abstract
We demonstrate experimentally a relatively simple yet powerful all-optical enhancement and control technique for high harmonic generation. This is achieved by using as a pump beam two different spatial optical modes interfering together to realize tunable periodic quasi-phase matching of the interaction. With this technique, we demonstrate on-the-fly quasi-phase matching of harmonic orders 29-41 at ambient gas pressure levels of 50 and 100 Torr, where an up to 100-fold enhancement of the emission is observed. The technique is scalable to different harmonic orders and ambient pressure conditions.
Collapse
Affiliation(s)
- Liran Hareli
- Department of Physical Electronics, School of Electrical Engineering, Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Lilya Lobachinsky
- Department of Physical Electronics, School of Electrical Engineering, Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Georgiy Shoulga
- Department of Physical Electronics, School of Electrical Engineering, Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Yaniv Eliezer
- Department of Physical Electronics, School of Electrical Engineering, Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Linor Michaeli
- Department of Physical Electronics, School of Electrical Engineering, Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Alon Bahabad
- Department of Physical Electronics, School of Electrical Engineering, Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
8
|
Kaksis E, Almási G, Fülöp JA, Pugžlys A, Baltuška A, Andriukaitis G. 110-mJ 225-fs cryogenically cooled Yb:CaF 2 multipass amplifier. OPTICS EXPRESS 2016; 24:28915-28922. [PMID: 27958556 DOI: 10.1364/oe.24.028915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on a diode-pumped cryogenically cooled bulk Yb:CaF2 12-pass amplifier delivering 110-mJ, 1030-nm pulses at a 50-Hz repetition rate. The pulses have a spectral bandwidth of 13 nm and are compressed to 225 fs pulse duration in a double reflection grating based compressor having a transmission efficiency of >90%. The measured output beam quality is M2<1.1. A key feature of the amplifier design is the 4f relay imaging onto the gain medium with progressive beam magnification for the mitigation of the spatial gain narrowing effect. The number of passes in the amplifier is scalable by increasing the size of imaging mirrors. In order to prevent accumulation of nonlinear phase due to self-phase modulation in air, the amplifier is enclosed into a low-vacuum case.
Collapse
|
9
|
Lara-Astiaso M, Silva REF, Gubaydullin A, Rivière P, Meier C, Martín F. Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses. PHYSICAL REVIEW LETTERS 2016; 117:093003. [PMID: 27610851 DOI: 10.1103/physrevlett.117.093003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 06/06/2023]
Abstract
One of the current challenges in high-harmonic generation is to extend the harmonic cutoff to increasingly high energies while maintaining or even increasing the efficiency of the high-harmonic emission. Here we show that the combined effect of down-chirped pulses and nuclear dynamics in light molecules allows one to achieve this goal, provided that long enough IR pulses are used to allow the nuclei to move well outside the Franck-Condon region. We also show that, by varying the duration of the chirped pulse or by performing isotopic substitution while keeping the pulse duration constant, one can control the extension of the harmonic plateau.
Collapse
Affiliation(s)
- M Lara-Astiaso
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - R E F Silva
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - A Gubaydullin
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - P Rivière
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - C Meier
- Laboratoire de Collisions Agrégats Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse, France
| | - F Martín
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
10
|
Vicario C, Ovchinnikov AV, Ashitkov SI, Agranat MB, Fortov VE, Hauri CP. Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg₂SiO₄ laser. OPTICS LETTERS 2014; 39:6632-5. [PMID: 25490639 DOI: 10.1364/ol.39.006632] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report on high-field terahertz transients with 0.9-mJ pulse energy produced in a 400 mm² partitioned organic crystal by optical rectification of a 30-mJ laser pulse centered at 1.25 μm wavelength. The phase-locked single-cycle terahertz pulses cover the hard-to-access low-frequency range between 0.1 and 5 THz and carry peak fields of more than 42 MV/cm and 14 Tesla with the potential to reach over 80 MV/cm by choosing appropriate focusing optics. The scheme based on a Cr:Mg₂SiO₄ laser offers a high conversion efficiency of 3% using uncooled organic crystal. The collimated pump laser configuration provides excellent terahertz focusing conditions.
Collapse
|
11
|
Fülöp JA, Ollmann Z, Lombosi C, Skrobol C, Klingebiel S, Pálfalvi L, Krausz F, Karsch S, Hebling J. Efficient generation of THz pulses with 0.4 mJ energy. OPTICS EXPRESS 2014; 22:20155-20163. [PMID: 25321225 DOI: 10.1364/oe.22.020155] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Efficient generation of THz pulses with high energy was demonstrated by optical rectification of 785-fs laser pulses in lithium niobate using tilted-pulse-front pumping. The enhancement of conversion efficiency by a factor of 2.4 to 2.7 was demonstrated up to 186 μJ THz energy by cryogenic cooling of the generating crystal and using up to 18.5 mJ/cm2 pump fluence. Generation of THz pulses with more than 0.4 mJ energy and 0.77% efficiency was demonstrated even at room temperature by increasing the pump fluence to 186 mJ/cm2. The spectral peak is at about 0.2 THz, suitable for charged-particle manipulation.
Collapse
|
12
|
Ruchert C, Vicario C, Hauri CP. Spatiotemporal focusing dynamics of intense supercontinuum THz pulses. PHYSICAL REVIEW LETTERS 2013; 110:123902. [PMID: 25166806 DOI: 10.1103/physrevlett.110.123902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Indexed: 05/19/2023]
Abstract
High-field terahertz (THz) single-cycle pulses with 1.5 MV/cm are generated by optical rectification in the stilbazolium salt crystal 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate. We show experimentally that the generated THz transient carrying 5 octaves (0.15 to 5.5 THz) undergoes a complex time-frequency evolution when tightly focused, and we present a model based on three independent oscillating dipoles capable to describe this anomalous field evolution. Finally, we present a method to control the absolute phase of such supercontinuum THz pulses as an essential tool for future field-sensitive investigations.
Collapse
Affiliation(s)
- Clemens Ruchert
- Paul Scherrer Institute, SwissFEL, 5232 Villigen PSI, Switzerland
| | - Carlo Vicario
- Paul Scherrer Institute, SwissFEL, 5232 Villigen PSI, Switzerland
| | - Christoph P Hauri
- Paul Scherrer Institute, SwissFEL, 5232 Villigen PSI, Switzerland and Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Zhu X, Qin M, Zhang Q, Li Y, Xu Z, Lu P. Influence of large permanent dipoles on molecular orbital tomography. OPTICS EXPRESS 2013; 21:5255-5268. [PMID: 23482097 DOI: 10.1364/oe.21.005255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The influence of large permanent dipoles on molecular orbital tomography via high-order harmonic generation (HHG) is investigated in this work. It is found that, owing to the modification of the angle-dependent ionization rate resulting from the Stark shift, the one-side-recollision condition for the tomographic imaging can not be satisfied even with the few-cycle driving pulses. To overcome this problem, we employ a tailored driving pulse by adding a weak low-frequency pulse to the few-cycle laser pulse to control the HHG process and the recollision of the continuum electrons are effectively restricted to only one side of the core. Then we carried out the orbital reconstruction in both the length and velocity forms. The results show that, the orbital structure can only be successfully reproduced by using the dipole matrix elements projected perpendicular to the permanent dipole in both forms.
Collapse
Affiliation(s)
- Xiaosong Zhu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|