1
|
Yu Y, Iskakov S, Gull E, Held K, Krien F. Unambiguous Fluctuation Decomposition of the Self-Energy: Pseudogap Physics beyond Spin Fluctuations. PHYSICAL REVIEW LETTERS 2024; 132:216501. [PMID: 38856250 DOI: 10.1103/physrevlett.132.216501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024]
Abstract
Correlated electron systems may give rise to multiple effective interactions whose combined impact on quasiparticle properties can be difficult to disentangle. We introduce an unambiguous decomposition of the electronic self-energy which allows us to quantify the contributions of various effective interactions simultaneously. We use this tool to revisit the hole-doped Hubbard model within the dynamical cluster approximation, where commonly spin fluctuations are considered to be the origin of the pseudogap. While our fluctuation decomposition confirms that spin fluctuations indeed suppress antinodal electronic spectral weight, we show that they alone cannot capture the pseudogap self-energy quantitatively. Nonlocal multiboson Feynman diagrams yield substantial contributions and are needed for a quantitative description of the pseudogap.
Collapse
Affiliation(s)
- Yang Yu
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sergei Iskakov
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Karsten Held
- Institute for Solid State Physics, TU Wien, 1040 Vienna, Austria
| | - Friedrich Krien
- Institute for Solid State Physics, TU Wien, 1040 Vienna, Austria
| |
Collapse
|
2
|
Fledgling Quantum Spin Hall Effect in Pseudo Gap Phase of Bi2212. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We studied the emergence of the quantum spin Hall (QSH) states for the pseudo-gap (PG) phase of Bi2212 bilayer system, assumed to be D-density wave (DDW) ordered, starting with a strong Rashba spin-orbit coupling (SOC) armed, and the time reversal symmetry (TRS) complaint Bloch Hamiltonian. The presence of strong SOC gives rise to non-trivial, spin-momentum locked spin texture tunable by electric field. The emergence of quantum anomalous Hall effect with TRS broken Chiral DDW Hamiltonian of Das Sarma et al. is found to be possible.
Collapse
|
3
|
Abstract
Superconductivity has entered the nickel age marked by enormous experimental and theoretical efforts. Notwithstanding, synthesizing nickelate superconductors remains extremely challenging, not least due to incomplete oxygen reduction and topotactic hydrogen. Here, we present density-functional theory calculations for nickelate superconductors with additional topotactic hydrogen or oxygen, namely La1−xSrxNiO2Hδ and LaNiO2+δ. We identify a phonon mode as a possible indication for topotactic hydrogen and discuss the charge redistribution patterns around oxygen and hydrogen impurities.
Collapse
|
4
|
Intertwined spin, charge, and pair correlations in the two-dimensional Hubbard model in the thermodynamic limit. Proc Natl Acad Sci U S A 2022; 119:2112806119. [PMID: 35140180 PMCID: PMC8851552 DOI: 10.1073/pnas.2112806119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
The high-temperature superconducting cuprates are governed by intertwined striped magnetic and charge orders, in addition to superconductivity. Remarkably similar behavior has also been seen in numerical calculations for the Hubbard model describing the copper–oxygen layers in these materials. Finite-cluster methods typically find that spin- and charge-stripe order dominates, while embedded quantum-cluster methods, which access the thermodynamic limit, often conclude that superconductivity does. Here, we report the observation of fluctuating spin and charge stripes in an embedded cluster calculation for the Hubbard model. This discovery demonstrates that striped states survive in the thermodynamic limit and allows us to study their influence on the model’s superconducting properties, where we find evidence for pair-density-wave correlations intertwined with the stripe correlations. The high-temperature superconducting cuprates are governed by intertwined spin, charge, and superconducting orders. While various state-of-the-art numerical methods have demonstrated that these phases also manifest themselves in doped Hubbard models, they differ on which is the actual ground state. Finite-cluster methods typically indicate that stripe order dominates, while embedded quantum-cluster methods, which access the thermodynamic limit by treating long-range correlations with a dynamical mean field, conclude that superconductivity does. Here, we report the observation of fluctuating spin and charge stripes in the doped single-band Hubbard model using a quantum Monte Carlo dynamical cluster approximation (DCA) method. By resolving both the fluctuating spin and charge orders using DCA, we demonstrate that they survive in the doped Hubbard model in the thermodynamic limit. This discovery also provides an opportunity to study the influence of fluctuating stripe correlations on the model’s pairing correlations within a unified numerical framework. Using this approach, we also find evidence for pair-density-wave correlations whose strength is correlated with that of the stripes.
Collapse
|
5
|
Yamamoto HM. Phase-Transition Devices Based on Organic Mott Insulators. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroshi M. Yamamoto
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
- RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Walsh C, Charlebois M, Sémon P, Sordi G, Tremblay AMS. Information-theoretic measures of superconductivity in a two-dimensional doped Mott insulator. Proc Natl Acad Sci U S A 2021; 118:e2104114118. [PMID: 34161286 PMCID: PMC8237656 DOI: 10.1073/pnas.2104114118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key open issue in condensed-matter physics is how quantum and classical correlations emerge in an unconventional superconductor from the underlying normal state. We study this problem in a doped Mott insulator with information-theory tools on the two-dimensional (2D) Hubbard model at finite temperature with cluster dynamical mean-field theory. We find that the local entropy detects the superconducting state and that the difference in the local entropy between the superconducting and normal states follows the same difference in the potential energy. We find that the thermodynamic entropy is suppressed in the superconducting state and monotonically decreases with decreasing doping. The maximum in entropy found in the normal state above the overdoped region of the superconducting dome is obliterated by superconductivity. The total mutual information, which quantifies quantum and classical correlations, is amplified in the superconducting state of the doped Mott insulator for all doping levels and shows a broad peak versus doping, as a result of competing quantum and classical effects.
Collapse
Affiliation(s)
- Caitlin Walsh
- Department of Physics, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
| | - Maxime Charlebois
- Département de Chimie, Biochimie et Physique, Institut de Recherche sur l'Hydrogène, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Patrick Sémon
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973-5000
| | - Giovanni Sordi
- Department of Physics, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom;
| | - André-Marie S Tremblay
- Département de Physique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Institut Quantique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
7
|
Chalupa P, Schäfer T, Reitner M, Springer D, Andergassen S, Toschi A. Fingerprints of the Local Moment Formation and its Kondo Screening in the Generalized Susceptibilities of Many-Electron Problems. PHYSICAL REVIEW LETTERS 2021; 126:056403. [PMID: 33605751 DOI: 10.1103/physrevlett.126.056403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/08/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
We identify the precise hallmarks of the local magnetic moment formation and its Kondo screening in the frequency structure of the generalized charge susceptibility. The sharpness of our identification even pinpoints an alternative criterion to determine the Kondo temperature of strongly correlated systems on the two-particle level, which only requires calculations at the lowest Matsubara frequency. We showcase its strength by applying it to the single impurity and the periodic Anderson model as well as to the Hubbard model. Our results represent a significant progress for the general understanding of quantum field theory at the two-particle level and allow for tracing the limits of the physics captured by perturbative approaches for correlated systems.
Collapse
Affiliation(s)
- P Chalupa
- Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria
| | - T Schäfer
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
- CPHT, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - M Reitner
- Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria
| | - D Springer
- Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria
- Institute of Advanced Research in Artificial Intelligence, IARAI, A-1030 Vienna, Austria
| | - S Andergassen
- Institut für Theoretische Physik and Center for Quantum Science, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - A Toschi
- Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria
| |
Collapse
|
8
|
Wang Y. Solvable Strong-Coupling Quantum-Dot Model with a Non-Fermi-Liquid Pairing Transition. PHYSICAL REVIEW LETTERS 2020; 124:017002. [PMID: 31976681 DOI: 10.1103/physrevlett.124.017002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 06/10/2023]
Abstract
We show that a random interacting model exhibits solvable non-Fermi-liquid behavior and exotic pairing behavior. This model, dubbed as the Yukawa-SYK model, describes the random Yukawa coupling between M quantum dots each hosting N flavors of fermions and N^{2} bosons that self-tune to criticality at low energies. The diagrammatic expansion is controlled by 1/MN, and the results become exact in a large-M, large-N limit. We find that pairing only develops within a region of the (M,N) plane-even though the pairing interaction is strongly attractive, the incoherence of the fermions can spoil the forming of Cooper pairs, rendering the system a non-Fermi liquid down to zero temperature. By solving the Eliashberg equation and the renormalization group equation, we show that the transition into the pairing phase exhibits Kosterlitz-Thouless quantum-critical behavior.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Physics, University of Florida, 2001 Museum Rd, Gainesville, Florida 32611, USA and Department of Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
9
|
Ayral T, Vučičević J, Parcollet O. Fierz Convergence Criterion: A Controlled Approach to Strongly Interacting Systems with Small Embedded Clusters. PHYSICAL REVIEW LETTERS 2017; 119:166401. [PMID: 29099214 DOI: 10.1103/physrevlett.119.166401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Indexed: 06/07/2023]
Abstract
We present an embedded-cluster method, based on the triply irreducible local expansion formalism. It turns the Fierz ambiguity, inherent to approaches based on a bosonic decoupling of local fermionic interactions, into a convergence criterion. It is based on the approximation of the three-leg vertex by a coarse-grained vertex computed from a self-consistently determined cluster impurity model. The computed self-energies are, by construction, continuous functions of momentum. We show that, in three interaction and doping regimes of the two-dimensional Hubbard model, self-energies obtained with clusters of size four only are very close to numerically exact benchmark results. We show that the Fierz parameter, which parametrizes the freedom in the Hubbard-Stratonovich decoupling, can be used as a quality control parameter. By contrast, the GW+extended dynamical mean field theory approximation with four cluster sites is shown to yield good results only in the weak-coupling regime and for a particular decoupling. Finally, we show that the vertex has spatially nonlocal components only at low Matsubara frequencies.
Collapse
Affiliation(s)
- Thomas Ayral
- Physics and Astronomy Department, Rutgers University, Piscataway, New Jersey 08854, USA
- Institut de Physique Théorique (IPhT), CEA, CNRS, UMR 3681, 91191 Gif-sur-Yvette, France
| | - Jaksa Vučičević
- Institut de Physique Théorique (IPhT), CEA, CNRS, UMR 3681, 91191 Gif-sur-Yvette, France
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Olivier Parcollet
- Institut de Physique Théorique (IPhT), CEA, CNRS, UMR 3681, 91191 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Ido K, Ohgoe T, Imada M. Correlation-induced superconductivity dynamically stabilized and enhanced by laser irradiation. SCIENCE ADVANCES 2017; 3:e1700718. [PMID: 28835923 PMCID: PMC5562419 DOI: 10.1126/sciadv.1700718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Studies on out-of-equilibrium dynamics have paved a way to realize a new state of matter. Superconductor-like properties above room temperatures recently suggested to be in copper oxides achieved by selectively exciting vibrational phonon modes by laser have inspired studies on an alternative and general strategy to be pursued for high-temperature superconductivity. We show that the superconductivity can be enhanced by irradiating laser to correlated electron systems owing to two mechanisms: First, the effective attractive interaction of carriers is enhanced by the dynamical localization mechanism, which drives the system into strong coupling regions. Second, the irradiation allows reaching uniform and enhanced superconductivity dynamically stabilized without deteriorating into equilibrium inhomogeneities that suppress superconductivity. The dynamical superconductivity is subject to the Higgs oscillations during and after the irradiation. Our finding sheds light on a way to enhance superconductivity that is inaccessible in equilibrium in strongly correlated electron systems.
Collapse
|
11
|
Chen X, LeBlanc JPF, Gull E. Simulation of the NMR response in the pseudogap regime of the cuprates. Nat Commun 2017; 8:14986. [PMID: 28387251 PMCID: PMC5385573 DOI: 10.1038/ncomms14986] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/20/2017] [Indexed: 11/09/2022] Open
Abstract
The pseudogap in the cuprate high-temperature superconductors was discovered as a suppression of the Knight shift and spin relaxation time measured in nuclear magnetic resonance (NMR) experiments. However, theoretical understanding of this suppression in terms of the magnetic susceptiblility of correlated itinerant fermion systems was so far lacking. Here we study the temperature and doping evolution of these quantities on the two-dimensional Hubbard model using cluster dynamical mean field theory. We recover the suppression of the Knight shift and the linear-in-T spin echo decay that increases with doping. The relaxation rate shows a marked increase as T is lowered but no indication of a pseudogap on the Cu site, and a clear downturn on the O site, consistent with experimental results on single layer materials but different from double layer materials. The consistency of these results with experiment suggests that the pseudogap is well described by strong short-range correlation effects.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - J P F LeBlanc
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Physics and Physical Oceanography, The Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada, A1B 3X9
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
12
|
Kloss T, Montiel X, de Carvalho VS, Freire H, Pépin C. Charge orders, magnetism and pairings in the cuprate superconductors. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:084507. [PMID: 27427401 DOI: 10.1088/0034-4885/79/8/084507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We review the recent developments in the field of cuprate superconductors with special focus on the recently observed charge order in the underdoped compounds. We introduce new theoretical developments following the study of the antiferromagnetic quantum critical point in two dimensions, in which preemptive orders in both charge and superconducting (SC) sectors emerge, that are in turn related by an SU(2) symmetry. We consider the implications of this proliferation of orders in the underdoped region, and provide a study of the type of fluctuations which characterize the SU(2) symmetry. We identify an intermediate energy scale where the SC fluctuations are dominant and argue that they are unstable towards the formation of a resonant excitonic state at the pseudogap temperature T (*). We discuss the implications of this scenario for a few key experiments.
Collapse
Affiliation(s)
- T Kloss
- IPhT, L'Orme des Merisiers, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
13
|
Misawa T, Nomura Y, Biermann S, Imada M. Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces. SCIENCE ADVANCES 2016; 2:e1600664. [PMID: 27482542 PMCID: PMC4966878 DOI: 10.1126/sciadv.1600664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2-x Sr x CuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices.
Collapse
Affiliation(s)
- Takahiro Misawa
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Nomura
- Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau, France
| | - Silke Biermann
- Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau, France
| | - Masatoshi Imada
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
14
|
Abstract
In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and −k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability. Pairing interaction appears at room temperature in traditional superconductors with a Cooper instability in the Fermi sea. Here, Maier et al. report that in the pseudogap phase of cuprate, where this instability is absent, superconductivity arises from an increase in the strength of the spin fluctuation pairing interaction as the temperature decreases.
Collapse
|
15
|
Loret B, Sakai S, Gallais Y, Cazayous M, Méasson MA, Forget A, Colson D, Civelli M, Sacuto A. Unconventional High-Energy-State Contribution to the Cooper Pairing in the Underdoped Copper-Oxide Superconductor HgBa_{2}Ca_{2}Cu_{3}O_{8+δ}. PHYSICAL REVIEW LETTERS 2016; 116:197001. [PMID: 27232035 DOI: 10.1103/physrevlett.116.197001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 06/05/2023]
Abstract
We study the temperature-dependent electronic B_{1g} Raman response of a slightly underdoped single crystal HgBa_{2}Ca_{2}Cu_{3}O_{8+δ} with a superconducting critical temperature T_{c}=122 K. Our main finding is that the superconducting pair-breaking peak is associated with a dip on its higher-energy side, disappearing together at T_{c}. This result reveals a key aspect of the unconventional pairing mechanism: spectral weight lost in the dip is transferred to the pair-breaking peak at lower energies. This conclusion is supported by cellular dynamical mean-field theory on the Hubbard model, which is able to reproduce all the main features of the B_{1g} Raman response and explain the peak-dip behavior in terms of a nontrivial relationship between the superconducting gap and the pseudogap.
Collapse
Affiliation(s)
- B Loret
- Laboratoire Matériaux et Phénomènes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - S Sakai
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Y Gallais
- Laboratoire Matériaux et Phénomènes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - M Cazayous
- Laboratoire Matériaux et Phénomènes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - M-A Méasson
- Laboratoire Matériaux et Phénomènes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - A Forget
- Service de Physique de l'État Condensé, DSM/IRAMIS/SPEC (UMR 3680 CNRS), CEA Saclay 91191 Gif sur Yvette cedex France
| | - D Colson
- Service de Physique de l'État Condensé, DSM/IRAMIS/SPEC (UMR 3680 CNRS), CEA Saclay 91191 Gif sur Yvette cedex France
| | - M Civelli
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - A Sacuto
- Laboratoire Matériaux et Phénomènes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| |
Collapse
|
16
|
Fratino L, Sémon P, Sordi G, Tremblay AMS. An organizing principle for two-dimensional strongly correlated superconductivity. Sci Rep 2016; 6:22715. [PMID: 26964524 PMCID: PMC4786811 DOI: 10.1038/srep22715] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 12/02/2022] Open
Abstract
Superconductivity in the cuprates exhibits many unusual features. We study the two-dimensional Hubbard model with plaquette dynamical mean-field theory to address these unusual features and relate them to other normal-state phenomena, such as the pseudogap. Previous studies with this method found that upon doping the Mott insulator at low temperature a pseudogap phase appears. The low-temperature transition between that phase and the correlated metal at higher doping is first-order. A series of crossovers emerge along the Widom line extension of that first-order transition in the supercritical region. Here we show that the highly asymmetric dome of the dynamical mean-field superconducting transition temperature , the maximum of the condensation energy as a function of doping, the correlation between maximum and normal-state scattering rate, the change from potential-energy driven to kinetic-energy driven pairing mechanisms can all be understood as remnants of the normal state first-order transition and its associated crossovers that also act as an organizing principle for the superconducting state.
Collapse
Affiliation(s)
- L Fratino
- Department of Physics, Royal Holloway, University of London, Egham, Surrey, UK, TW20 0EX
| | - P Sémon
- Département de physique and Regroupement québéquois sur les matériaux de pointe, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - G Sordi
- Department of Physics, Royal Holloway, University of London, Egham, Surrey, UK, TW20 0EX
| | - A-M S Tremblay
- Département de physique and Regroupement québéquois sur les matériaux de pointe, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1.,Canadian Institute for Advanced Research, Toronto, Ontario, Canada, M5G 1Z8
| |
Collapse
|
17
|
Sakai S, Civelli M, Imada M. Hidden Fermionic Excitation Boosting High-Temperature Superconductivity in Cuprates. PHYSICAL REVIEW LETTERS 2016; 116:057003. [PMID: 26894730 DOI: 10.1103/physrevlett.116.057003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 06/05/2023]
Abstract
The dynamics of a microscopic cuprate model, namely, the two-dimensional Hubbard model, is studied with a cluster extension of the dynamical mean-field theory. We find a nontrivial structure of the frequency-dependent self-energies, which describes an unprecedented interplay between the pseudogap and superconductivity. We show that these properties are well described by quasiparticles hybridizing with (hidden) fermionic excitations, emergent from the strong electronic correlations. The hidden fermion enhances superconductivity via a mechanism distinct from a conventional boson-mediated pairing, and originates the normal-state pseudogap. Though the hidden fermion is elusive in experiments, it can solve many experimental puzzles.
Collapse
Affiliation(s)
- Shiro Sakai
- Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Marcello Civelli
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Masatoshi Imada
- Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113-8656, Japan
| |
Collapse
|
18
|
Merino J, Gunnarsson O, Kotliar G. Self-energy behavior away from the Fermi surface in doped Mott insulators. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:045501. [PMID: 26742570 DOI: 10.1088/0953-8984/28/4/045501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We analyze self-energies of electrons away from the Fermi surface in doped Mott insulators using the dynamical cluster approximation to the Hubbard model. For large onsite repulsion, U, and hole doping, the magnitude of the self-energy for imaginary frequencies at the top of the band ([Formula: see text]) is enhanced with respect to the self-energy magnitude at the bottom of the band ([Formula: see text]). The self-energy behavior at these two [Formula: see text]-points is switched for electron doping. Although the hybridization is much larger for (0, 0) than for [Formula: see text], we demonstrate that this is not the origin of this difference. Isolated clusters under a downward shift of the chemical potential, [Formula: see text], at half-filling reproduce the overall self-energy behavior at (0, 0) and [Formula: see text] found in low hole doped embedded clusters. This happens although there is no change in the electronic structure of the isolated clusters. Our analysis shows that a downward shift of the chemical potential which weakly hole dopes the Mott insulator can lead to a large enhancement of the [Formula: see text] self-energy for imaginary frequencies which is not associated with electronic correlation effects, even in embedded clusters. Interpretations of the strength of electronic correlations based on self-energies for imaginary frequencies are, in general, misleading for states away from the Fermi surface.
Collapse
Affiliation(s)
- J Merino
- Departamento de Física Teórica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | |
Collapse
|
19
|
Chen X, LeBlanc JPF, Gull E. Superconducting fluctuations in the normal state of the two-dimensional Hubbard model. PHYSICAL REVIEW LETTERS 2015; 115:116402. [PMID: 26406843 DOI: 10.1103/physrevlett.115.116402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 06/05/2023]
Abstract
We compute the two-particle quantities relevant for superconducting correlations in the two-dimensional Hubbard model within the dynamical cluster approximation. In the normal state we identify the parameter regime in density, interaction, and second-nearest-neighbor hopping strength that maximizes the d_{x^{2}-y^{2}} superconducting transition temperature. We find in all cases that the optimal transition temperature occurs at intermediate coupling strength, and is suppressed at strong and weak interaction strengths. Similarly, superconducting fluctuations are strongest at intermediate doping and suppressed towards large doping and half filling. We find a change in sign of the vertex contributions to d_{xy} superconductivity from repulsive near half filling to attractive at large doping. p-wave superconductivity is not found at the parameters we study, and s-wave contributions are always repulsive. For negative second-nearest-neighbor hopping the optimal transition temperature shifts towards the electron-doped side in opposition to the van Hove singularity, which moves towards hole doping. We surmise that an increase of the local interaction of the electron-doped compounds would increase T_{c}.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - J P F LeBlanc
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
20
|
Hartmann B, Zielke D, Polzin J, Sasaki T, Müller J. Critical slowing down of the charge carrier dynamics at the Mott metal-insulator transition. PHYSICAL REVIEW LETTERS 2015; 114:216403. [PMID: 26066449 DOI: 10.1103/physrevlett.114.216403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 06/04/2023]
Abstract
We report on the dramatic slowing down of the charge carrier dynamics in a quasi-two-dimensional organic conductor, which can be reversibly tuned through the Mott metal-insulator transition (MIT). At the finite-temperature critical end point, we observe a divergent increase of the resistance fluctuations accompanied by a drastic shift of spectral weight to low frequencies, demonstrating the critical slowing down of the order parameter (doublon density) fluctuations. The slow dynamics is accompanied by non-Gaussian fluctuations, indicative of correlated charge carrier dynamics. A possible explanation is a glassy freezing of the electronic system as a precursor of the Mott MIT.
Collapse
Affiliation(s)
- Benedikt Hartmann
- Institute of Physics and SFB/TR 49, Goethe-University Frankfurt, 60438 Frankfurt (M), Germany
| | - David Zielke
- Institute of Physics and SFB/TR 49, Goethe-University Frankfurt, 60438 Frankfurt (M), Germany
| | - Jana Polzin
- Institute of Physics and SFB/TR 49, Goethe-University Frankfurt, 60438 Frankfurt (M), Germany
| | - Takahiko Sasaki
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Jens Müller
- Institute of Physics and SFB/TR 49, Goethe-University Frankfurt, 60438 Frankfurt (M), Germany
| |
Collapse
|
21
|
Oike H, Miyagawa K, Taniguchi H, Kanoda K. Pressure-induced Mott transition in an organic superconductor with a finite doping level. PHYSICAL REVIEW LETTERS 2015; 114:067002. [PMID: 25723239 DOI: 10.1103/physrevlett.114.067002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 06/04/2023]
Abstract
We report the pressure study of a doped organic superconductor with a Hall coefficient and conductivity measurements. We find that maximally enhanced superconductivity and a marginal-Fermi liquid appear around a certain pressure where mobile carriers increase critically, suggesting a possible quantum phase transition between strongly and weakly correlated regimes. This observation points to the presence of a criticality in Mottness for a doped Mott insulator with tunable correlation.
Collapse
Affiliation(s)
- H Oike
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - K Miyagawa
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - H Taniguchi
- Department of Physics, Saitama University, Saitama, Saitama 338-8570, Japan
| | - K Kanoda
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
22
|
|
23
|
Yamamoto HM, Kawasugi Y, Cui H, Nakano M, Iwasa Y, Kato R. Asymmetric Phase Transitions Observed at the Interface of a Field‐Effect Transistor Based on an Organic Mott Insulator. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hiroshi M. Yamamoto
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, Okazaki, Aichi 444‐8585, Japan, http://yamamoto‐tokyo.jp/ims
- RIKEN, Wako, Saitama 351‐0198 Japan
| | | | | | - Masaki Nakano
- Institute for Materials Research, Tohoku University, Aoba‐ku, Sendai 980‐8577, Japan
| | - Yoshihiro Iwasa
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351‐0198 Japan
- Quantum Phase Electronics Center and Department of Applied Physics, School of Engineering, The University of Tokyo, Bunkyo‐ku, Tokyo 113‐8656, Japan
| | | |
Collapse
|
24
|
Sakai S, Blanc S, Civelli M, Gallais Y, Cazayous M, Méasson MA, Wen JS, Xu ZJ, Gu GD, Sangiovanni G, Motome Y, Held K, Sacuto A, Georges A, Imada M. Raman-scattering measurements and theory of the energy-momentum spectrum for underdoped Bi2Sr2CaCuO(8+δ) superconductors: evidence of an s-wave structure for the pseudogap. PHYSICAL REVIEW LETTERS 2013; 111:107001. [PMID: 25166695 DOI: 10.1103/physrevlett.111.107001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 06/03/2023]
Abstract
We reveal the full energy-momentum structure of the pseudogap of underdoped high-Tc cuprate superconductors. Our combined theoretical and experimental analysis explains the spectral-weight suppression observed in the B2g Raman response at finite energies in terms of a pseudogap appearing in the single-electron excitation spectra above the Fermi level in the nodal direction of momentum space. This result suggests an s-wave pseudogap (which never closes in the energy-momentum space), distinct from the d-wave superconducting gap. Recent tunneling and photoemission experiments on underdoped cuprates also find a natural explanation within the s-wave pseudogap scenario.
Collapse
Affiliation(s)
- S Sakai
- Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau, France and Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113-8656, Japan and JST-CREST, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - S Blanc
- Laboratoire Matériaux et Phénomnes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - M Civelli
- Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex, France
| | - Y Gallais
- Laboratoire Matériaux et Phénomnes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - M Cazayous
- Laboratoire Matériaux et Phénomnes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - M-A Méasson
- Laboratoire Matériaux et Phénomnes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - J S Wen
- Matter Physics and Materials Science, Brookhaven National Laboratory (BNL), Upton, New York 11973, USA
| | - Z J Xu
- Matter Physics and Materials Science, Brookhaven National Laboratory (BNL), Upton, New York 11973, USA
| | - G D Gu
- Matter Physics and Materials Science, Brookhaven National Laboratory (BNL), Upton, New York 11973, USA
| | - G Sangiovanni
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany and Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna, Austria
| | - Y Motome
- Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113-8656, Japan
| | - K Held
- Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna, Austria
| | - A Sacuto
- Laboratoire Matériaux et Phénomnes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - A Georges
- Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau, France and JST-CREST, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan and Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France and DPMC, Université de Genève, 24 Quai Ernest Ansermet, CH-1211 Genève, Suisse
| | - M Imada
- Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113-8656, Japan and JST-CREST, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
25
|
Gull E, Parcollet O, Millis AJ. Superconductivity and the pseudogap in the two-dimensional Hubbard model. PHYSICAL REVIEW LETTERS 2013; 110:216405. [PMID: 23745902 DOI: 10.1103/physrevlett.110.216405] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Indexed: 06/02/2023]
Abstract
Recently developed numerical methods have enabled the explicit construction of the superconducting state of the Hubbard model of strongly correlated electrons in parameter regimes where the model also exhibits a pseudogap and a Mott insulating phase. d(x(2)-y(2)) symmetry superconductivity is found to occur in proximity to the Mott insulator, but separated from it by a pseudogapped nonsuperconducting phase. The superconducting transition temperature and order parameter amplitude are found to be maximal at the onset of the normal-state pseudogap. The emergence of superconductivity from the normal state pseudogap leads to a decrease in the excitation gap. All of these features are consistent with the observed behavior of the copper-oxide superconductors.
Collapse
Affiliation(s)
- Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
26
|
Merino J, Gunnarsson O. Origin of the pseudogap in cuprate superconductors from quantum cluster theories. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:052201. [PMID: 23264461 DOI: 10.1088/0953-8984/25/5/052201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We analyze the origin of the pseudogap present in cuprate superconductors. We elucidate the mechanism of pseudogap formation close to the Mott localization within the dynamical cluster approach (DCA) to the Hubbard model. As the Coulomb interaction is increased, cluster-bath Kondo states are destroyed and a nondegenerate bound cluster state is formed, leading to a pseudogap. This occurs first at the antinodal point due to its weaker coupling to the bath, explaining the momentum dependence of the pseudogap. We find that the character of the pseudogap is related to breaking d-wave pairs.
Collapse
Affiliation(s)
- J Merino
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain.
| | | |
Collapse
|
27
|
Berg E, Metlitski MA, Sachdev S. Sign-Problem–Free Quantum Monte Carlo of the Onset of Antiferromagnetism in Metals. Science 2012; 338:1606-9. [DOI: 10.1126/science.1227769] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Erez Berg
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Max A. Metlitski
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
| | - Subir Sachdev
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Post Office Box 9506, 2300 RA Leiden, Netherlands
| |
Collapse
|
28
|
Pseudogap temperature as a Widom line in doped Mott insulators. Sci Rep 2012; 2:547. [PMID: 22855703 PMCID: PMC3409386 DOI: 10.1038/srep00547] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 11/10/2022] Open
Abstract
The pseudogap refers to an enigmatic state of matter with unusual physical properties found below a characteristic temperature T* in hole-doped high-temperature superconductors. Determining T* is critical for understanding this state. Here we study the simplest model of correlated electron systems, the Hubbard model, with cluster dynamical mean-field theory to find out whether the pseudogap can occur solely because of strong coupling physics and short nonlocal correlations. We find that the pseudogap characteristic temperature T* is a sharp crossover between different dynamical regimes along a line of thermodynamic anomalies that appears above a first-order phase transition, the Widom line. The Widom line emanating from the critical endpoint of a first-order transition is thus the organizing principle for the pseudogap phase diagram of the cuprates. No additional broken symmetry is necessary to explain the phenomenon. Broken symmetry states appear in the pseudogap and not the other way around.
Collapse
|