1
|
Wiese KJ. Hyperuniformity in the Manna Model, Conserved Directed Percolation and Depinning. PHYSICAL REVIEW LETTERS 2024; 133:067103. [PMID: 39178464 DOI: 10.1103/physrevlett.133.067103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 08/25/2024]
Abstract
Hyperuniformity is an emergent property, whereby the structure factor of the density n scales as S(q)∼q^{α}, with α>0. We show that for the conserved directed percolation (CDP) class, to which the Manna model belongs, there is an exact mapping between the density n in CDP, and the interface position u at depinning, n(x)=n_{0}+∇^{2}u(x), where n_{0} is the conserved particle density. As a consequence, the hyperuniformity exponent equals α=4-d-2ζ, with ζ the roughness exponent at depinning, and d the dimension. In d=1, α=1/2, while 0.6>α≥0 for other d. Our results fit well the simulations in the literature, except in d=1, where we perform our own to confirm this result. Such an exact relation between two seemingly different fields is surprising, and paves new paths to think about hyperuniformity and depinning. As corollaries, we get results of unprecedented precision in all dimensions, exact in d=1. This corrects earlier work on hyperuniformity in CDP.
Collapse
|
2
|
Jocteur T, Figueiredo S, Martens K, Bertin E, Mari R. Yielding Is an Absorbing Phase Transition with Vanishing Critical Fluctuations. PHYSICAL REVIEW LETTERS 2024; 132:268203. [PMID: 38996301 DOI: 10.1103/physrevlett.132.268203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 07/14/2024]
Abstract
The yielding transition in athermal complex fluids can be interpreted as an absorbing phase transition between an elastic, absorbing state with high mesoscopic degeneracy and a flowing, active state. We characterize quantitatively this phase transition in an elastoplastic model under fixed applied shear stress, using a finite-size scaling analysis. We find vanishing critical fluctuations of the order parameter (i.e., the shear rate), and relate this property to the convex character of the phase transition (β>1). We locate yielding within a family of models akin to fixed-energy sandpile (FES) models, only with long-range redistribution kernels with zero modes that result from mechanical equilibrium. For redistribution kernels with sufficiently fast decay, this family of models belongs to a short-range universality class distinct from the conserved directed percolation class of usual FES, which is induced by zero modes.
Collapse
|
3
|
Lee SB, Kim JM. Continuum contact process and influence of impurity on the critical behavior in absorbing-state phase transitions in two dimensions. Phys Rev E 2023; 108:064135. [PMID: 38243520 DOI: 10.1103/physreve.108.064135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
We study via Monte Carlo simulations the influence of quenched and mobile impurities in the contact process (CP) on two-dimensional lattice and continuum systems. In the lattice system, the effect of mobile impurity was studied for the density n_{i}=0.2 and two selected values of hopping probability for impurity particles, w=0.5 and 1. In the continuum system, the CP was defined by distributing spherical impurity particles of diameter σ_{i} and number density n_{i}=0.2 and active particles of diameter unity and number density 1-n_{i} on a square substrate with periodic boundaries. In each dynamic process, a particle is selected at random; the active particle either creates with a rate λ an offspring at a distance r (1≤r≤1.5) from the active particle or annihilates with a unit rate, and the impurity particle hops a distance r (0≤r≤1), both along randomly selected directions. We found that the lattice CP shows power-law behaviors with varying critical exponents depending on the values of w. For the continuum CP with quenched impurity, the critical behavior followed the activated scaling scenario, whereas with mobile impurity usual power-law behaviors were observed but the critical exponents varied depending on the values of σ_{i}.
Collapse
Affiliation(s)
- Sang Bub Lee
- Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Korea
| | - Jin Min Kim
- Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
4
|
Wiese KJ. Theory and experiments for disordered elastic manifolds, depinning, avalanches, and sandpiles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086502. [PMID: 35943081 DOI: 10.1088/1361-6633/ac4648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/23/2021] [Indexed: 06/15/2023]
Abstract
Domain walls in magnets, vortex lattices in superconductors, contact lines at depinning, and many other systems can be modeled as an elastic system subject to quenched disorder. The ensuing field theory possesses a well-controlled perturbative expansion around its upper critical dimension. Contrary to standard field theory, the renormalization group (RG) flow involves a function, the disorder correlator Δ(w), and is therefore termed the functional RG. Δ(w) is a physical observable, the auto-correlation function of the center of mass of the elastic manifold. In this review, we give a pedagogical introduction into its phenomenology and techniques. This allows us to treat both equilibrium (statics), and depinning (dynamics). Building on these techniques, avalanche observables are accessible: distributions of size, duration, and velocity, as well as the spatial and temporal shape. Various equivalences between disordered elastic manifolds, and sandpile models exist: an elastic string driven at a point and the Oslo model; disordered elastic manifolds and Manna sandpiles; charge density waves and Abelian sandpiles or loop-erased random walks. Each of the mappings between these systems requires specific techniques, which we develop, including modeling of discrete stochastic systems via coarse-grained stochastic equations of motion, super-symmetry techniques, and cellular automata. Stronger than quadratic nearest-neighbor interactions lead to directed percolation, and non-linear surface growth with additional Kardar-Parisi-Zhang (KPZ) terms. On the other hand, KPZ without disorder can be mapped back to disordered elastic manifolds, either on the directed polymer for its steady state, or a single particle for its decay. Other topics covered are the relation between functional RG and replica symmetry breaking, and random-field magnets. Emphasis is given to numerical and experimental tests of the theory.
Collapse
Affiliation(s)
- Kay Jörg Wiese
- Laboratoire de physique, Département de physique de l'ENS, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France
| |
Collapse
|
5
|
Kim JM, Lee SB. Alternative method for measuring characteristic lengths in absorbing phase transitions. Phys Rev E 2022; 105:025307. [PMID: 35291143 DOI: 10.1103/physreve.105.025307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
We applied an alternative method for measuring characteristic lengths reported recently by one of us [J. M. Kim, J. Stat. Mech. (2021) 03321310.1088/1742-5468/abe599] to the models in the Manna universality class, i.e., the stochastic Manna sandpile and conserved lattice gas models in various dimensions. The universality of the Manna model has been under long debate particularly in one dimension since the work of M. Basu et al. [Phys. Rev. Lett. 109, 015702 (2012)10.1103/PhysRevLett.109.015702], who claimed that the Manna model belongs to the directed percolation (DP) universality class and that the independent Manna universality class does not exist. We carried out Monte Carlo simulations for the stochastic Manna sandpile model in one, two, and three dimensions and the conserved lattice gas model in three dimensions, using both the natural initial states (NISs) and uniform initial states (UISs). In two and three dimensions, the results for R(t), defined by R(t)=L[〈ρ_{a}^{2}〉/〈ρ_{a}〉^{2}-1]^{1/d}, L and ρ_{a} being, respectively, the system size and activity density, yielded consistent results for the two initial states. R(t) is proportional to the correlation length following R(t)∼t^{1/z} at the critical point. In one dimension, the data of R(t) for the Manna model using NISs yielded anomalous behavior, suggesting that NISs require much longer prerun time steps to homogenize the distribution of particles and larger systems to eliminate the finite-size effect than those employed in the literature. On the other hand, data from UISs yielded a power-law behavior, and the estimated critical exponents differed from the values in the DP class.
Collapse
Affiliation(s)
- Jin Min Kim
- Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Korea
| | - Sang Bub Lee
- Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
6
|
Lei QL, Hu H, Ni R. Barrier-controlled nonequilibrium criticality in reactive particle systems. Phys Rev E 2021; 103:052607. [PMID: 34134288 DOI: 10.1103/physreve.103.052607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/03/2021] [Indexed: 11/07/2022]
Abstract
Nonequilibrium critical phenomena generally exist in many dynamic systems, like chemical reactions and some driven-dissipative reactive particle systems. Here, by using computer simulation and theoretical analysis, we demonstrate the crucial role of the activation barrier on the criticality of dynamic phase transitions in a minimal reactive hard-sphere model. We find that at zero thermal noise, with increasing the activation barrier, the type of transition changes from a continuous conserved directed percolation into a discontinuous dynamic transition by crossing a tricritical point. A mean-field theory combined with field simulation is proposed to explain this phenomenon. The possibility of Ising-type criticality in the nonequilibrium system at finite thermal noise is also discussed.
Collapse
Affiliation(s)
- Qun-Li Lei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Hao Hu
- School of Physics and Materials Science, Anhui University, Hefei 230601, China
| | - Ran Ni
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
7
|
Tapader D, Pradhan P, Dhar D. Density relaxation in conserved Manna sandpiles. Phys Rev E 2021; 103:032122. [PMID: 33862746 DOI: 10.1103/physreve.103.032122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/18/2021] [Indexed: 11/07/2022]
Abstract
We study relaxation of long-wavelength density perturbations in a one-dimensional conserved Manna sandpile. Far from criticality where correlation length ξ is finite, relaxation of density profiles having wave numbers k→0 is diffusive, with relaxation time τ_{R}∼k^{-2}/D with D being the density-dependent bulk-diffusion coefficient. Near criticality with kξ≳1, the bulk diffusivity diverges and the transport becomes anomalous; accordingly, the relaxation time varies as τ_{R}∼k^{-z}, with the dynamical exponent z=2-(1-β)/ν_{⊥}<2, where β is the critical order-parameter exponent and ν_{⊥} is the critical correlation-length exponent. Relaxation of initially localized density profiles on an infinite critical background exhibits a self-similar structure. In this case, the asymptotic scaling form of the time-dependent density profile is analytically calculated: we find that, at long times t, the width σ of the density perturbation grows anomalously, σ∼t^{w}, with the growth exponent ω=1/(1+β)>1/2. In all cases, theoretical predictions are in reasonably good agreement with simulations.
Collapse
Affiliation(s)
- Dhiraj Tapader
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Deepak Dhar
- Department of Physics, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
8
|
Schrauth M, Portela JSE. Universality of continuous phase transitions on random Voronoi graphs. Phys Rev E 2020; 100:062118. [PMID: 31962429 DOI: 10.1103/physreve.100.062118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 11/07/2022]
Abstract
The Voronoi construction is ubiquitous across the natural sciences and engineering. In statistical mechanics, however, only its dual, the Delaunay triangulation, has been considered in the investigation of critical phenomena. In this paper we set to fill this gap by studying three prominent systems of classical statistical mechanics, the equilibrium spin-1/2 Ising model, the nonequilibrium contact process, and the conserved stochastic sandpile model on two-dimensional random Voronoi graphs. Particular motivation comes from the fact that these graphs have vertices of constant coordination number, making it possible to isolate topological effects of quenched disorder from node-intrinsic coordination number disorder. Using large-scale numerical simulations and finite-size scaling techniques, we are able to demonstrate that all three systems belong to their respective clean universality classes. Therefore, quenched disorder introduced by the randomness of the lattice is irrelevant and does not influence the character of the phase transitions. We report the critical points to considerable precision and, for the Ising model, also the first correction-to-scaling exponent.
Collapse
Affiliation(s)
- Manuel Schrauth
- Institute of Theoretical Physics and Astrophysics, University of Würzburg, 97074 Würzburg, Germany
| | - Jefferson S E Portela
- Institute of Theoretical Physics and Astrophysics, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
9
|
Wei N, Pruessner G. Critical density of the Abelian Manna model via a multitype branching process. Phys Rev E 2019; 100:032116. [PMID: 31639922 DOI: 10.1103/physreve.100.032116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 06/10/2023]
Abstract
A multitype branching process is introduced to mimic the evolution of the avalanche activity and determine the critical density of the Abelian Manna model. This branching process incorporates partially the spatiotemporal correlations of the activity, which are essential for the dynamics, in particular in low dimensions. An analytical expression for the critical density in arbitrary dimensions is derived, which significantly improves the results over mean-field theories, as confirmed by comparison to the literature on numerical estimates from simulations. The method can easily be extended to lattices and dynamics other than those studied in the present work.
Collapse
Affiliation(s)
- Nanxin Wei
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom and Centre for Complexity Science, Imperial College London, SW7 2AZ London, United Kingdom
| | - Gunnar Pruessner
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom and Centre for Complexity Science, Imperial College London, SW7 2AZ London, United Kingdom
| |
Collapse
|
10
|
Chatterjee S, Das A, Pradhan P. Hydrodynamics, density fluctuations, and universality in conserved stochastic sandpiles. Phys Rev E 2018; 97:062142. [PMID: 30011450 DOI: 10.1103/physreve.97.062142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 06/08/2023]
Abstract
We study conserved stochastic sandpiles (CSSs), which exhibit an active-absorbing phase transition upon tuning density ρ. We demonstrate that a broad class of CSSs possesses a remarkable hydrodynamic structure: There is an Einstein relation σ^{2}(ρ)=χ(ρ)/D(ρ), which connects bulk-diffusion coefficient D(ρ), conductivity χ(ρ), and mass fluctuation, or scaled variance of subsystem mass, σ^{2}(ρ). Consequently, density large-deviations are governed by an equilibrium-like chemical potential μ(ρ)∼lna(ρ), where a(ρ) is the activity in the system. By using the above hydrodynamics, we derive two scaling relations: As Δ=(ρ-ρ_{c})→0^{+}, ρ_{c} being the critical density, (i) the mass fluctuation σ^{2}(ρ)∼Δ^{1-δ} with δ=0 and (ii) the dynamical exponent z=2+(β-1)/ν_{⊥}, expressed in terms of two static exponents β and ν_{⊥} for activity a(ρ)∼Δ^{β} and correlation length ξ∼Δ^{-ν_{⊥}}, respectively. Our results imply that conserved Manna sandpile, a well studied variant of the CSS, belongs to a distinct universality-not that of directed percolation (DP), which, without any conservation law as such, does not obey scaling relation (ii).
Collapse
Affiliation(s)
- Sayani Chatterjee
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake, Kolkata 700106, India
| | - Arghya Das
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
11
|
Dandekar R. Logarithmic speed-up of relaxation in A-B annihilation with exclusion. Phys Rev E 2018; 97:042118. [PMID: 29758681 DOI: 10.1103/physreve.97.042118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 11/07/2022]
Abstract
We show that the decay of the density of active particles in the reaction A+B→0 in one dimension, with exclusion interaction, results in logarithmic corrections to the expected power law decay, when the starting initial condition (i.c.) is periodic. It is well known that the late-time density of surviving particles goes as t^{-1/4} with random initial conditions, and as t^{-1/2} with alternating initial conditions (ABABAB⋯). We show that the decay for periodic i.c.'s made of longer blocks (A^{n}B^{n}A^{n}B^{n}⋯) do not show a pure power-law decay when n is even. By means of first-passage Monte Carlo simulations, and a mapping to a q-state coarsening model which can be solved in the independent interval approximation (IIA), we show that the late-time decay of the density of surviving particles goes as t^{-1/2}[ln(t)]^{-1} for n even, but as t^{-1/2} when n is odd. We relate this kinetic symmetry breaking in the Glauber Ising model. We also see a very slow crossover from a t^{-1/2}[ln(t)]^{-1} regime to eventual t^{-1/2} behavior for i.c.'s made of mixtures of odd- and even-length blocks.
Collapse
Affiliation(s)
- Rahul Dandekar
- The Institute of Mathematical Sciences - HBNI, CIT Campus, Taramani, Chennai 600113, India
| |
Collapse
|
12
|
Chatterjee A, Mohanty PK. Multichain models of conserved lattice gas. Phys Rev E 2017; 96:042120. [PMID: 29347572 DOI: 10.1103/physreve.96.042120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Conserved lattice-gas models in one dimension exhibit absorbing state phase transition (APT) with simple integer exponents β=1=ν=η, whereas the same on a ladder belong to directed percolation (DP) universality. We conjecture that additional stochasticity in particle transfer is a relevant perturbation and its presence on a ladder forces the APT to be in the DP class. To substantiate this we introduce a class of restricted conserved lattice-gas models on a multichain system (M×L square lattice with periodic boundary condition in both directions), where particles which have exactly one vacant neighbor are active and they move deterministically to the neighboring vacant site. We show that for odd number of chains, in the thermodynamic limit L→∞, these models exhibit APT at ρ_{c}=1/2(1+1/M) with β=1. On the other hand, for even-chain systems transition occurs at ρ_{c}=1/2 with β=1,2 for M=2,4, respectively, and β=3 for M≥6. We illustrate this unusual critical behavior analytically using a transfer-matrix method.
Collapse
Affiliation(s)
- Arijit Chatterjee
- CMP Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India
| | - P K Mohanty
- CMP Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India
| |
Collapse
|
13
|
Kwon S, Kim JM. Hyperuniformity of initial conditions and critical decay of a diffusive epidemic process belonging to the Manna class. Phys Rev E 2017; 96:012146. [PMID: 29347137 DOI: 10.1103/physreve.96.012146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Indexed: 06/07/2023]
Abstract
For a fixed-energy Manna sandpile model belonging to a Manna class in one dimension (d=1), we recently showed that the critical decay is different for random and regular initial conditions (ICs). Compared with previous results of natural IC for several models, we suggested for the Manna class that the critical decay depends on the characteristics of the three ICs. But the dependence on the random and regular ICs was shown only for a single model. In this work, we study the critical decay for the random and regular ICs for another model of the Manna class in d=1, a diffusive epidemic process. It is shown that the critical decay exponent agrees with the previous result for each IC, which verifies that IC dependence is a common feature of the Manna class. In addition, for the random and regular ICs, we measure the variance σ^{2}(r) of total particle density in a region of size r by increasing r up to system size and investigate its temporal evolution toward the value σ_{q}^{2}(r) of the quasisteady state at criticality. In d=1,σ^{2}(r) scales as σ^{2}(r)∼r^{-ψ} with ψ=1 for random distributions and 1<ψ≤2 for hyperuniform ones. The temporal evolution shows that σ^{2}(r) of the two ICs differently relax toward σ_{q}^{2}(r) and the regular IC becomes a hyperuniform distribution of ψ=2 in the beginning of the evolution. We estimate ψ=1.45(3) for both the quasisteady state and absorbing states, so the quasisteady state is also as hyperuniform as absorbing states. The hyperuniformity of the quasisteady state shows that the natural IC also should be hyperuniform as much as the quasisteady state, because the natural IC is obtained from particle configurations close to the quasisteady state. Consequently, the different ψ of the three ICs suggest that σ^{2}(r) can classify the characteristics of the three ICs in a unified way and the different degree of hyperuniformity of the ICs provides another explanation for the observed IC-dependent critical decay in a point of view of initial fluctuations and correlations.
Collapse
Affiliation(s)
- Sungchul Kwon
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| | - Jin Min Kim
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
14
|
Chatterjee A, Mohanty PK. Multicritical absorbing phase transition in a class of exactly solvable models. Phys Rev E 2017; 94:062141. [PMID: 28085348 DOI: 10.1103/physreve.94.062141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Indexed: 11/06/2022]
Abstract
We study diffusion of hard-core particles on a one-dimensional periodic lattice subjected to a constraint that the separation between any two consecutive particles does not increase beyond a fixed value n+1; an initial separation larger than n+1 can however decrease. These models undergo an absorbing state phase transition when the conserved particle density of the system falls below a critical threshold ρ_{c}=1/(n+1). We find that the ϕ_{k}, the density of 0-clusters (0 representing vacancies) of size 0≤k<n, vanish at the transition point along with activity density ρ_{a}. The steady state of these models can be written in matrix product form to obtain analytically the static exponents β_{k}=n-k and ν=1=η corresponding to each ϕ_{k}. We also show from numerical simulations that, starting from a natural condition, ϕ_{k}(t)s decay as t^{-α_{k}} with α_{k}=(n-k)/2 even though other dynamic exponents ν_{t}=2=z are independent of k; this ensures the validity of scaling laws β=αν_{t} and ν_{t}=zν.
Collapse
Affiliation(s)
- Arijit Chatterjee
- CMP Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India
| | - P K Mohanty
- CMP Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India
| |
Collapse
|
15
|
Génois M, Hersen P, Bertin E, Courrech du Pont S, Grégoire G. Out-of-equilibrium stationary states, percolation, and subcritical instabilities in a fully nonconservative system. Phys Rev E 2016; 94:042101. [PMID: 27841529 DOI: 10.1103/physreve.94.042101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 11/07/2022]
Abstract
The exploration of the phase diagram of a minimal model for barchan fields leads to the description of three distinct phases for the system: stationary, percolable, and unstable. In the stationary phase the system always reaches an out-of-equilibrium, fluctuating, stationary state, independent of its initial conditions. This state has a large and continuous range of dynamics, from dilute-where dunes do not interact-to dense, where the system exhibits both spatial structuring and collective behavior leading to the selection of a particular size for the dunes. In the percolable phase, the system presents a percolation threshold when the initial density increases. This percolation is unusual, as it happens on a continuous space for moving, interacting, finite lifetime dunes. For extreme parameters, the system exhibits a subcritical instability, where some of the dunes in the field grow without bound. We discuss the nature of the asymptotic states and their relations to well-known models of statistical physics.
Collapse
Affiliation(s)
- Mathieu Génois
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris-Diderot, CNRS UMR 7057, F-75205 Paris Cedex 13, France.,CPT, Aix-Marseille Université, Université de Toulon, CNRS, UMR 7332, F-13288, Marseille, France
| | - Pascal Hersen
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris-Diderot, CNRS UMR 7057, F-75205 Paris Cedex 13, France
| | - Eric Bertin
- LIPHY, Université Grenoble Alpes and CNRS, F-38000 Grenoble, France
| | - Sylvain Courrech du Pont
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris-Diderot, CNRS UMR 7057, F-75205 Paris Cedex 13, France
| | - Guillaume Grégoire
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris-Diderot, CNRS UMR 7057, F-75205 Paris Cedex 13, France.,HPC Institute (ICI), École Centrale, Nantes, 1 rue de la Noë, F-44300 Nantes, France
| |
Collapse
|
16
|
Grassberger P, Dhar D, Mohanty PK. Oslo model, hyperuniformity, and the quenched Edwards-Wilkinson model. Phys Rev E 2016; 94:042314. [PMID: 27841652 DOI: 10.1103/physreve.94.042314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 06/06/2023]
Abstract
We present simulations of the one-dimensional Oslo rice pile model in which the critical height at each site is randomly reset after each toppling. We use the fact that the stationary state of this sand-pile model is hyperuniform to reach system of sizes >10^{7}. Most previous simulations were seriously flawed by important finite-size corrections. We find that all critical exponents have values consistent with simple rationals: ν=4/3 for the correlation length exponent, D=9/4 for the fractal dimension of avalanche clusters, and z=10/7 for the dynamical exponent. In addition, we relate the hyperuniformity exponent to the correlation length exponent ν. Finally, we discuss the relationship with the quenched Edwards-Wilkinson model, where we find in particular that the local roughness exponent is α_{loc}=1.
Collapse
Affiliation(s)
| | - Deepak Dhar
- Tata Institute for Fundamental Research, Mumbai, India
| | - P K Mohanty
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Kolkata, India
| |
Collapse
|
17
|
Kwon S, Kim JM. Critical behavior for random initial conditions in the one-dimensional fixed-energy Manna sandpile model. Phys Rev E 2016; 94:012113. [PMID: 27575083 DOI: 10.1103/physreve.94.012113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 11/07/2022]
Abstract
A fixed-energy Manna sandpile model undergoes an absorbing phase transition at a critical ρ_{c}, where an order parameter ϕ(t) decays as t^{-α} in time t. As the prototype of the Manna class, the model has been extensively studied in one dimension. However, the previous estimates of ρ_{c} and some critical exponents are different, depending on the types of initial conditions; random, natural, and regular conditions. The estimates of ρ_{c} for the random and the regular conditions are the lower and the upper bound among currently known estimates, respectively. In this work, for the random conditions, ρ_{c} and α are measured by taking into account finite-size (FS) effects. At the previous estimate of ρ_{c}, simulation results show that the temporal decay of ϕ(t) is strongly affected by the FS effects up to much larger system size (∼10^{6}). For the sizes for which ϕ(t) is independent up to t=2×10^{7}, we estimate ρ_{c}=0.8925(1) and α=0.110(5), which clearly differ from the previous results for the random conditions, ρ_{c}=0.89199(5) and α=0.141(24). Instead, the present ρ_{c} agrees with ρ_{c}=0.89255(2) of the regular conditions. In addition, the present α is substantially distinguishable from the results of the other types of initial conditions, α=0.159(3) and 0.146(2) for the natural and the regular conditions, respectively, which supports the claim of the initial condition dependence of dynamical exponents in the Manna class.
Collapse
Affiliation(s)
- Sungchul Kwon
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| | - Jin Min Kim
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
18
|
Kwon S, Kim JM. Absence of absorbing phase transitions in a conserved lattice-gas model in one dimension. Phys Rev E 2016; 93:012106. [PMID: 26871023 DOI: 10.1103/physreve.93.012106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 11/07/2022]
Abstract
A one-dimensional conserved lattice-gas model is known to undergo continuous absorbing phase transitions where some of the critical exponents are exactly known. In one dimension, we recently showed that the model is mapped onto a two species reaction A+B→0 with diffusion rate of D_{A}>0 and D_{B}=0. In this work, it is explicitly shown from the scaling theory for A+B→0 that the observed scaling behavior of the conserved lattice-gas model is not associated with the absorbing phase transitions. Instead, the model indeed undergoes a crossover between two different scaling behaviors of A+B→0, the scaling behaviors of equal and unequal initial densities of two species. The crossover is similar to the absorbing transitions in many respects but some important features of continuous transitions such as the diverging fluctuations of an order parameter are absent.
Collapse
Affiliation(s)
- Sungchul Kwon
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| | - Jin Min Kim
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
19
|
Lee SB. Absorbing phase transition in a conserved lattice gas model with next-nearest-neighbor hopping in one dimension. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062102. [PMID: 26764627 DOI: 10.1103/physreve.92.062102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Indexed: 06/05/2023]
Abstract
The absorbing phase transition of the modified conserved lattice gas (m-CLG) model was investigated in one dimension. The m-CLG model was modified from the conserved lattice gas (CLG) model in such a way that each active particle hops to one of the nearest-neighbor and next-nearest-neighbor empty sites. The order parameter exponent, the dynamic exponent, and the correlation length exponent were estimated from the power-law behavior and finite-size scaling of the active particle densities. The exponents were found to differ considerably from those of the ordinary CLG model and were also distinct from those of the Manna model, suggesting that next-nearest-neighbor hopping is a relevant factor that alters the critical behavior in the one-dimensional CLG model.
Collapse
Affiliation(s)
- Sang Bub Lee
- Department of Physics and Department of Nano-Science & Technology of Graduate School, Kyungpook National University, Daegu 41556, Korea
| |
Collapse
|
20
|
Kwon S, Kim JM. Critical behavior of a fixed-energy Manna sandpile model for regular initial conditions in one dimension. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062149. [PMID: 26764674 DOI: 10.1103/physreve.92.062149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Indexed: 06/05/2023]
Abstract
For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the critical behavior for regular initial conditions in which activities are distributed at regular intervals on average. The FE Manna model conserves the density ρ of total particles and undergoes an absorbing phase transition at a critical ρ(c). For the regular initial conditions, we show via extensive simulations that the dynamical scaling behaviors differ from those of the random and the natural initial conditions. Off-critical scaling exponents β and ν(⊥) are also measured and shown to agree well with the values of the directed percolation (DP) class as reported by Basu et al. [Phys. Rev. Lett. 109, 015702 (2012)]. Our results suggest that the dynamical scaling behaviors depend on the characteristics of initial conditions, but the off-critical scaling behaviors in the steady state are independent of initial conditions and belong to the DP class.
Collapse
Affiliation(s)
- Sungchul Kwon
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| | - Jin Min Kim
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
21
|
Dickman R, da Cunha SD. Particle-density fluctuations and universality in the conserved stochastic sandpile. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:020104. [PMID: 26382328 DOI: 10.1103/physreve.92.020104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Indexed: 06/05/2023]
Abstract
We examine fluctuations in particle density in the restricted-height, conserved stochastic sandpile (CSS). In this and related models, the global particle density is a temperaturelike control parameter. Thus local fluctuations in this density correspond to disorder; if this disorder is a relevant perturbation of directed percolation (DP), then the CSS should exhibit non-DP critical behavior. We analyze the scaling of the variance Vℓ of the number of particles in regions of ℓd sites in extensive simulations of the quasistationary state in one and two dimensions. Our results, combined with a Harris-like argument for the relevance of particle-density fluctuations, strongly suggest that conserved stochastic sandpiles belong to a universality class distinct from that of DP.
Collapse
Affiliation(s)
- Ronald Dickman
- Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Caixa Postal 702, 30161-970 Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology of Complex Systems, Caixa Postal 702, 30161-970 Belo Horizonte, Minas Gerais, Brazil
| | - S D da Cunha
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59078-970 Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
22
|
Le Doussal P, Wiese KJ. Exact mapping of the stochastic field theory for Manna sandpiles to interfaces in random media. PHYSICAL REVIEW LETTERS 2015; 114:110601. [PMID: 25839253 DOI: 10.1103/physrevlett.114.110601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Indexed: 06/04/2023]
Abstract
We show that the stochastic field theory for directed percolation in the presence of an additional conservation law [the conserved directed-percolation (C-DP) class] can be mapped exactly to the continuum theory for the depinning of an elastic interface in short-range correlated quenched disorder. Along one line of the parameters commonly studied, this mapping leads to the simplest overdamped dynamics. Away from this line, an additional memory term arises in the interface dynamics; we argue that this does not change the universality class. Since C-DP is believed to describe the Manna class of self-organized criticality, this shows that Manna stochastic sandpiles and disordered elastic interfaces (i.e., the quenched Edwards-Wilkinson model) share the same universal large-scale behavior.
Collapse
Affiliation(s)
- Pierre Le Doussal
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, Paris 75005, France
| | - Kay Jörg Wiese
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, Paris 75005, France
| |
Collapse
|
23
|
Bhaumik H, Ahmed JA, Santra SB. Crossover from rotational to stochastic sandpile universality in the random rotational sandpile model. Phys Rev E 2015; 90:062136. [PMID: 25615073 DOI: 10.1103/physreve.90.062136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 11/07/2022]
Abstract
In the rotational sandpile model, either the clockwise or the anticlockwise toppling rule is assigned to all the lattice sites. It has all the features of a stochastic sandpile model but belongs to a different universality class than the Manna class. A crossover from rotational to Manna universality class is studied by constructing a random rotational sandpile model and assigning randomly clockwise and anticlockwise rotational toppling rules to the lattice sites. The steady state and the respective critical behavior of the present model are found to have a strong and continuous dependence on the fraction of the lattice sites having the anticlockwise (or clockwise) rotational toppling rule. As the anticlockwise and clockwise toppling rules exist in equal proportions, it is found that the model reproduces critical behavior of the Manna model. It is then further evidence of the existence of the Manna class, in contradiction with some recent observations of the nonexistence of the Manna class.
Collapse
Affiliation(s)
- Himangsu Bhaumik
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Jahir Abbas Ahmed
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - S B Santra
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
24
|
Kwon S, Kim JM. Effects of random initial conditions on the dynamical scaling behaviors of a fixed-energy Manna sandpile model in one dimension. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012149. [PMID: 25679612 DOI: 10.1103/physreve.91.012149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 06/04/2023]
Abstract
For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the effects of random initial conditions on the dynamical scaling behavior of an order parameter. In the FE Manna model, the density ρ of total particles is conserved, and an absorbing phase transition occurs at ρ(c) as ρ varies. In this work, we show that, for a given ρ, random initial distributions of particles lead to the domain structure in which domains with particle densities higher and lower than ρ(c) alternate with each other. In the domain structure, the dominant length scale is the average domain length, which increases via the coalescence of adjacent domains. At ρ(c), the domain structure slows down the decay of an order parameter and also causes anomalous finite-size effects, i.e., power-law decay followed by an exponential one before the quasisteady state. As a result, the interplay of particle conservation and random initial conditions causes the domain structure, which is the origin of the anomalous dynamical scaling behaviors for random initial conditions.
Collapse
Affiliation(s)
- Sungchul Kwon
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| | - Jin Min Kim
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
25
|
Lee SB. Universality class of the conserved Manna model in one dimension. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:060101. [PMID: 25019704 DOI: 10.1103/physreve.89.060101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 06/03/2023]
Abstract
The nonequilibrium absorbing phase transition of the discrete conserved Manna model was studied via Monte Carlo simulations on a one-dimensional chain, using the natural initial states with a sequential update. The critical density of the particles was found to be smaller than the recently reported value, and the order-parameter exponent was considerably different from the directed percolation (DP) value. The influence of quenched disorder was also studied on a diluted strip of L_{x}×L_{y} lattice sites with L_{x}≫L_{y}, and the results were compared with those of the contact process (CP). It was found that the Manna model and the CP exhibited distinctly different behaviors; the CP exhibited nonuniversal power-law decreases of active-site densities in the Griffith phase, whereas the Manna model showed a standard critical behavior. These results consistently suggest that the Manna model belongs to a universality class that is different from the DP class.
Collapse
Affiliation(s)
- Sang Bub Lee
- Department of Physics, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
26
|
Lee SB. Critical behavior of absorbing phase transitions for models in the Manna class with natural initial states. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062133. [PMID: 25019750 DOI: 10.1103/physreve.89.062133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Indexed: 06/03/2023]
Abstract
The critical behavior of absorbing phase transitions for two typical models in the Manna universality class, the conserved Manna model and the conserved lattice gas model, both on a square lattice, was investigated using the natural initial states. Various critical exponents were estimated using the static and dynamic simulations. The exponents characterizing dynamics of active particles differ considerably from the known exponents obtained using the random initial states, whereas those associated with the steady-state quantities remain the same. The critical exponents for both models were consistent with errors of less than 1% and satisfied the known scaling relations; thus, the known violation of scaling relations for models with a conserved field was resolved using the natural initial states. The results differed by 7%∼12% from the directed percolation values.
Collapse
Affiliation(s)
- Sang Bub Lee
- Department of Physics, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
27
|
Bondyopadhyay S. Dependence of asymptotic decay exponents on initial condition and the resulting scaling violation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062125. [PMID: 24483404 DOI: 10.1103/physreve.88.062125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Indexed: 06/03/2023]
Abstract
There are several examples which show that the critical exponents can be dependent on the initial condition of the system. In such situations, there are many systems where various issues related to the universal behavior, e.g., the existence of universality, the splitting of the universality class, scaling violations, whether the initial dependence should persist even after a sufficiently long time or is a transient effect, the reasons for such features, etc. are not yet quite clear. In this article, with the simple example of the conserved lattice gas model (CLG), we investigate such issues and clearly show that under certain situations the asymptotic decay exponents are, in fact, dependent on the initial condition of the system. We show that such an effect arises because of the existence of two competing time scales and identify the initial conditions which capture the universal features of the system.
Collapse
Affiliation(s)
- Sourish Bondyopadhyay
- CMP Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064, India
| |
Collapse
|
28
|
Xu SLY, Schwarz JM. Contact processes in crowded environments. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052130. [PMID: 24329237 DOI: 10.1103/physreve.88.052130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Indexed: 06/03/2023]
Abstract
Periodically sheared colloids at low densities demonstrate a dynamical phase transition from an inactive to active phase as the strain amplitude is increased. The inactive phase consists of no collisions (contacts) between particles in the steady state limit, while in the active phase collisions persist. To investigate this system at higher densities, we construct and study a conserved-particle-number contact process with three-body interactions, which are potentially more likely than two-body interactions at higher densities. For example, consider one active (diffusing) particle colliding with two inactive (nondiffusing) particles such that they become active and consider spontaneous inactivation. In mean field, this system exhibits a continuous dynamical phase transition. Simulations on square lattices also indicate a continuous transition with exponents similar to those measured for the conserved lattice gas (CLG) model. In contrast, the three-body interaction requiring two active particles to activate one inactive particle exhibits a discontinuous transition. Finally, inspired by kinetically constrained models of the glass transition, we investigate the "caging effect" at even higher particle densities to look for a second dynamical phase transition back to an inactive phase. Square lattice simulations suggest a continuous transition with a new set of exponents differing from both the CLG model and what is known as directed percolation, indicating a potentially new universality class for a contact process with a conserved particle number.
Collapse
Affiliation(s)
- S-L-Y Xu
- National Institutes of Health, Bethesda, Maryland 20892, USA
| | - J M Schwarz
- Physics Department, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
29
|
Zeraati S, Jafarpour FH, Hinrichsen H. Phase transition in an exactly solvable reaction-diffusion process. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062120. [PMID: 23848640 DOI: 10.1103/physreve.87.062120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Indexed: 06/02/2023]
Abstract
We study a nonconserved one-dimensional stochastic process which involves two species of particles A and B. The particles diffuse asymmetrically and react in pairs as A∅↔AA↔BA↔A∅ and B∅↔BB↔AB↔B∅. We show that the stationary state of the model can be calculated exactly by using matrix product techniques. The model exhibits a phase transition at a particular point in the phase diagram which can be related to a condensation transition in a particular zero-range process. We determine the corresponding critical exponents and provide a heuristic explanation for the unusually strong corrections to scaling seen in the vicinity of the critical point.
Collapse
Affiliation(s)
- Somayeh Zeraati
- Bu-Ali Sina University, Physics Department, 65174-4161 Hamedan, Iran.
| | | | | |
Collapse
|
30
|
Lee SB. Comment on "Fixed-energy sandpiles belong generically to directed percolation". PHYSICAL REVIEW LETTERS 2013; 110:159601. [PMID: 25167323 DOI: 10.1103/physrevlett.110.159601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/28/2012] [Indexed: 06/03/2023]
Affiliation(s)
- Sang Bub Lee
- Department of Physics, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|