1
|
Pal R. Rheology of high internal phase ratio emulsions and foams. Adv Colloid Interface Sci 2025; 339:103426. [PMID: 39938157 DOI: 10.1016/j.cis.2025.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/28/2024] [Accepted: 02/01/2025] [Indexed: 02/14/2025]
Abstract
A comprehensive review of the rheology and related phenomena of high internal phase ratio emulsions (referred to as HIPREs) and foams is presented. Emulsions and foams with Brownian and non-Brownian inclusions (droplets/bubbles) are considered. The topics covered are osmotic pressure, modelling and experiments of the rheology of HIPREs/foams, time-dependent rheology (thixotropy/rheopexy), normal stresses, shear banding and slip effects in flow of HIPREs/foams, influence of solid particle stabilizers (Pickering emulsion/foam), and finally pipe rheology and flow of HIPREs/foams. This is the first review article that covers all aspects of the rheology of HIPREs/foams. The theoretical and empirical models describing the osmotic pressure and rheology (yield stress, storage modulus, viscosity, etc.) of HIPREs/foams are presented and their limitations pointed out. The contributions of entropic effects in the rheology of HIPREs/foams consisting of Brownian inclusions (droplets/bubbles) are given special consideration. The key experimental studies available in the literature are reviewed including measurements of yield stress, storage modulus, and viscosity of HIPREs/foams. Comparisons of experimental data with the theoretical and semi-theoretical models are made and the limitations of the models are identified. Experimental studies elaborating special effects in HIPREs/foams rheology such as thixotropy, rheopexy, normal stresses in fixed shear strain and steady shear, shear banding in thixotropic HIPREs/foams, and slip effects are also reviewed. The effects of average size and size distribution of inclusions (droplets/bubbles) on the rheology of HIPREs/foams are evaluated. The rheology of Pickering HIPREs/foams stabilized with solid nanoparticles at the interface is reviewed and compared with the rheology of surfactant-stabilized systems. Finally, the experimental work published on the pipe flow of HIPREs/foams and its connection to rheology is presented and discussed. The gaps in the existing knowledge of the rheology of HIPREs/foams are identified and future research directions in the area are given.
Collapse
Affiliation(s)
- Rajinder Pal
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
2
|
Bergman M, Xu Y, Muñéton Díaz J, Zhang C, Mason TG, Scheffold F. A Free Energy Model for the Plateau Shear Modulus in Thermosensitive Microgel Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4084-4091. [PMID: 39901625 DOI: 10.1021/acs.langmuir.4c04528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Polymer microgels exhibit intriguing macroscopic flow properties arising from their unique microscopic structure. Microgel colloids usually comprise a cross-linked polymer network with a radially decaying density profile, resulting in a dense core surrounded by a fuzzy corona. Notably, microgels synthesized from poly(N-isopropylacrylamide) (PNIPAM) are thermoresponsive and capable of adjusting their size and density profile based on temperature. Above the lower critical solution temperature (T LCST ∼ 33 °C), the microgel's polymer network collapses, expulsing water through a reversible process. Conversely, below 33 °C, the microgel's network swells, becoming highly compressible and allowing overpacking to effective volume fractions exceeding one. Under conditions of dense packing, microgels undergo deformation in distinct stages: corona compression and faceting, interpenetration, and finally, isotropic compression. Each stage exhibits a characteristic signature in the dense microgel suspensions' yield stress and elastic modulus. Here, we introduce a model for the linear elastic shear modulus by minimizing a quasi-equilibrium free energy, encompassing all relevant energetic contributions. We validate our model by comparing its predictions to experimental results from oscillatory shear rheology tests on microgel suspensions at different densities and temperatures. Our findings demonstrate that combining macroscopic rheological measurements with the model allows for temperature-dependent characterization of polymer interaction parameters.
Collapse
Affiliation(s)
- Maxime Bergman
- Department of Physics, University of Fribourg, Fribourg 1700, Switzerland
| | - Yixuan Xu
- Department of Materials Science and Engineering, University of California - Los Angeles, Los Angeles, California 90095, United States
| | - José Muñéton Díaz
- Department of Physics, University of Fribourg, Fribourg 1700, Switzerland
| | - Chi Zhang
- Department of Physics, University of Fribourg, Fribourg 1700, Switzerland
| | - Thomas G Mason
- Department of Physics and Astronomy, University of California - Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California - Los Angeles, Los Angeles, California 90095, United States
| | - Frank Scheffold
- Department of Physics, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
3
|
Poincloux S, Takeuchi KA. Rigidity transition of a highly compressible granular medium. Proc Natl Acad Sci U S A 2024; 121:e2408706121. [PMID: 39602252 PMCID: PMC11626199 DOI: 10.1073/pnas.2408706121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
A wide range of disordered materials, from biological to geological assemblies, feature discrete elements undergoing large shape changes. How significant geometrical variations at the microscopic scale affect the response of the assembly, in particular rigidity transitions, is an ongoing challenge in soft matter physics. However, the lack of a model granular-like experimental system featuring large and versatile particle deformability impedes advances. Here, we explore the oscillatory shear response of a sponge-like granular assembly composed of highly compressible elastic rings. We highlight a progressive rigidity transition, switching from a yielded phase to a solid one by increasing density or decreasing shear amplitude. The rearranging yielded state consists of crystal clusters separated by melted regions; in contrast, the solid state remains amorphous and absorbs all imposed shear elastically. We rationalize this transition by uncovering an effective, attractive shear force between rings that emerges from a friction-geometry interplay. If friction is sufficiently high, the extent of the contacts between rings, captured analytically by elementary geometry, controls the rigidity transition.
Collapse
Affiliation(s)
- Samuel Poincloux
- Department of Physics, The University of Tokyo, Bunkyo-ku113-0033, Tokyo, Japan
| | - Kazumasa A. Takeuchi
- Department of Physics, The University of Tokyo, Bunkyo-ku113-0033, Tokyo, Japan
- Institute for Physics of Intelligence, The University of Tokyo, Bunkyo-ku113-0033, Tokyo, Japan
| |
Collapse
|
4
|
Martinoty P, Sánchez-Ferrer A. Viscoelastic properties of colloidal systems with attractive solid particles at low concentration: A review, new results and interpretations. Adv Colloid Interface Sci 2024; 335:103335. [PMID: 39541869 DOI: 10.1016/j.cis.2024.103335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
This paper concerns the viscoelastic properties and the resulting structure of colloidal systems with short-range attractions in the regime where the volume fraction f is small. Unlike the high ϕ regime, which is well understood in terms of mode-coupling theory (MCT), the low ϕ regime is still the subject of a debate based on different concepts such as percolation, diffusion-limited colloidal aggregation (DLCA), jamming, or cluster mode-coupling approach. Prior to the analysis of three examples of attractive systems at low ϕ values, a summary of concepts relevant to understanding the formation and properties of such attractive particles is discussed in the present study. Afterwards, we re-analyze the behaviour at a low ϕ of i) suspensions of carbon black (CB) particles, ii) suspensions of poly(methyl methacrylate) (PMMA) hard spheres with a depletion attraction induced by the addition of polystyrene (PS), and iii) suspensions of amino acid organogelator molecules which form rod-like objects. The rheological properties of these systems have been studied in detail and their response has been interpreted as being due either to a solid network discussed in relation to the jamming state diagram or to a suspension formed by jamming of clusters. Our analysis shows that these three systems are in fact cluster fluids and that their solid-like response corresponds to a change in their viscoelastic response, the elastic component G' becoming greater than the viscous component G" at low frequencies. Due to the presence of weak interparticle interactions in the tens range from 1 to 15 kBT, a liquid-like state is reversibly achieved at high frequencies, as indicated by the crossover of G' and G" as a function of frequency for a given concentration. Moreover, all these attractive particle systems at low ϕ show for both moduli a master curve which characterizes these cluster fluids and allows for the classification of these attractive particle systems.
Collapse
Affiliation(s)
- Philippe Martinoty
- Institut Charles Sadron, UPR 22, CNRS/UDS, 23 rue du Loess, BP 84047, F-67034 Strasbourg, France
| | - Antoni Sánchez-Ferrer
- Technical University of Munich, Wood Research Munich, Winzererstrasse 45, D-80797 Munich, Germany.
| |
Collapse
|
5
|
Chakraborty S, Ramola K. Long-range correlations in elastic moduli and local stresses at the unjamming transition. SOFT MATTER 2024; 20:4895-4904. [PMID: 38860707 DOI: 10.1039/d4sm00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
We explore the behaviour of spatially heterogeneous elastic moduli as well as the correlations between local moduli in model solids with short-range repulsive potentials. We show through numerical simulations that local elastic moduli exhibit long-range correlations, similar to correlations in the local stresses. Specifically, the correlations in local shear moduli exhibit anisotropic behavior at large lengthscales characterized by pinch-point singularities in Fourier space, displaying a structural pattern akin to shear stress correlations. Focussing on two-dimensional jammed solids approaching the unjamming transition, we show that stress correlations exhibit universal properties, characterized by a quadratic p2 dependence of the correlations as the pressure p approaches zero, independent of the details of the model. In contrast, the modulus correlations exhibit a power-law dependence with different exponents depending on the specific interaction potential. Furthermore, we illustrate that while affine responses lack long-range correlations, the total modulus, which encompasses non-affine behavior, exhibits long-range correlations.
Collapse
Affiliation(s)
| | - Kabir Ramola
- Tata Institute of Fundamental Research, Hyderabad 500046, India.
| |
Collapse
|
6
|
Hedström L, Olsson P. Considerations on the relaxation time in shear-driven jamming. Phys Rev E 2024; 109:064904. [PMID: 39020915 DOI: 10.1103/physreve.109.064904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 07/20/2024]
Abstract
We study the jamming transition in a model of elastic particles under shear at zero temperature, with a focus on the relaxation time τ_{1}. This relaxation time is from two-step simulations where the first step is the ordinary shearing simulation and the second step is the relaxation of the energy after stopping the shearing. τ_{1} is determined from the final exponential decay of the energy. Such relaxations are done with many different starting configurations generated by a long shearing simulation in which the shear variable γ slowly increases. We study the correlations of both τ_{1}, determined from the decay, and the pressure, p_{1}, from the starting configurations as a function of the difference in γ. We find that the correlations of p_{1} are longer lived than the ones of τ_{1} and find that the reason for this is that the individual τ_{1} is controlled both by p_{1} of the starting configuration and a random contribution which depends on the relaxation path length-the average distance moved by the particles during the relaxation. We further conclude that it is γ_{τ}, determined from the correlations of τ_{1}, which is the relevant one when the aim is to generate data that may be used for determining the critical exponent that characterizes the jamming transition.
Collapse
|
7
|
Das R, Sinha S, Li X, Kirkpatrick TR, Thirumalai D. Free volume theory explains the unusual behavior of viscosity in a non-confluent tissue during morphogenesis. eLife 2024; 12:RP87966. [PMID: 38241331 PMCID: PMC10945604 DOI: 10.7554/elife.87966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
A recent experiment on zebrafish blastoderm morphogenesis showed that the viscosity (η) of a non-confluent embryonic tissue grows sharply until a critical cell packing fraction (ϕS). The increase in η up to ϕS is similar to the behavior observed in several glass-forming materials, which suggests that the cell dynamics is sluggish or glass-like. Surprisingly, η is a constant above ϕS. To determine the mechanism of this unusual dependence of η on ϕ, we performed extensive simulations using an agent-based model of a dense non-confluent two-dimensional tissue. We show that polydispersity in the cell size, and the propensity of the cells to deform, results in the saturation of the available free area per cell beyond a critical packing fraction. Saturation in the free space not only explains the viscosity plateau above ϕS but also provides a relationship between equilibrium geometrical packing to the dramatic increase in the relaxation dynamics.
Collapse
Affiliation(s)
- Rajsekhar Das
- Department of Chemistry, University of Texas at AustinAustinUnited States
| | - Sumit Sinha
- Department of Physics, University of Texas at AustinAustinUnited States
| | - Xin Li
- Department of Chemistry, University of Texas at AustinAustinUnited States
| | - TR Kirkpatrick
- Institute for Physical Science and Technology, University of MarylandCollege ParkUnited States
| | - D Thirumalai
- Department of Chemistry, University of Texas at AustinAustinUnited States
- Department of Physics, University of Texas at AustinAustinUnited States
| |
Collapse
|
8
|
Ghosh S, Vemparala S, Chaudhuri P. Onset of glassiness in two-dimensional ring polymers: Interplay of stiffness and crowding. J Chem Phys 2024; 160:014906. [PMID: 38180251 DOI: 10.1063/5.0160097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/26/2023] [Indexed: 01/06/2024] Open
Abstract
The effect of ring stiffness and pressure on the glassy dynamics of a thermal assembly of two-dimensional ring polymers is investigated using extensive coarse-grained molecular dynamics simulations. In all cases, dynamical slowing down is observed with increasing pressure, and thereby, a phase space for equilibrium dynamics is identified in the plane of the obtained monomer density and ring stiffness. When the rings are highly flexible, i.e., have low ring stiffness, glassiness sets in via the crowding of crumpled polymers, which take on a globular form. In contrast, at large ring stiffness, when the rings tend to have large asphericity under compaction, we observe the emergence of local domains having orientational ordering at high pressures. Therefore, our simulations highlight how varying the deformability of rings leads to contrasting mechanisms in driving the system toward the glassy regime.
Collapse
Affiliation(s)
- Sayantan Ghosh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Pinaki Chaudhuri
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
9
|
Atia L, Fredberg JJ. A life off the beaten track in biomechanics: Imperfect elasticity, cytoskeletal glassiness, and epithelial unjamming. BIOPHYSICS REVIEWS 2023; 4:041304. [PMID: 38156333 PMCID: PMC10751956 DOI: 10.1063/5.0179719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023]
Abstract
Textbook descriptions of elasticity, viscosity, and viscoelasticity fail to account for certain mechanical behaviors that typify soft living matter. Here, we consider three examples. First, strong empirical evidence suggests that within lung parenchymal tissues, the frictional stresses expressed at the microscale are fundamentally not of viscous origin. Second, the cytoskeleton (CSK) of the airway smooth muscle cell, as well as that of all eukaryotic cells, is more solid-like than fluid-like, yet its elastic modulus is softer than the softest of soft rubbers by a factor of 104-105. Moreover, the eukaryotic CSK expresses power law rheology, innate malleability, and fluidization when sheared. For these reasons, taken together, the CSK of the living eukaryotic cell is reminiscent of the class of materials called soft glasses, thus likening it to inert materials such as clays, pastes slurries, emulsions, and foams. Third, the cellular collective comprising a confluent epithelial layer can become solid-like and jammed, fluid-like and unjammed, or something in between. Esoteric though each may seem, these discoveries are consequential insofar as they impact our understanding of bronchospasm and wound healing as well as cancer cell invasion and embryonic development. Moreover, there are reasons to suspect that certain of these phenomena first arose in the early protist as a result of evolutionary pressures exerted by the primordial microenvironment. We have hypothesized, further, that each then became passed down virtually unchanged to the present day as a conserved core process. These topics are addressed here not only because they are interesting but also because they track the journey of one laboratory along a path less traveled by.
Collapse
Affiliation(s)
- Lior Atia
- Ben Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
10
|
Wiese R, Kroy K, Levis D. Fluid-Glass-Jamming Rheology of Soft Active Brownian Particles. PHYSICAL REVIEW LETTERS 2023; 131:178302. [PMID: 37955492 DOI: 10.1103/physrevlett.131.178302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
We numerically study the shear rheology of a binary mixture of soft active Brownian particles, from the fluid to the disordered solid regime. At low shear rates, we find a Newtonian regime, where a Green-Kubo relation with an effective temperature provides the linear viscosity. It is followed by a shear-thinning regime at high shear rates. At high densities, solidification is signaled by the emergence of a finite yield stress. We construct a "fluid-glass-jamming" phase diagram with activity replacing temperature. While both parameters gauge fluctuations, activity also changes the exponent characterizing the decay of the diffusivity close to the glass transition and the shape of the yield stress surface. The dense disordered active solid appears to be mostly dominated by athermal jamming rather than glass rheology.
Collapse
Affiliation(s)
- Roland Wiese
- Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany
| | - Klaus Kroy
- Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany
| | - Demian Levis
- Departement de Física de la Materia Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- University of Barcelona Institute of Complex Systems (UBICS), Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Shivers JL, Sharma A, MacKintosh FC. Strain-Controlled Critical Slowing Down in the Rheology of Disordered Networks. PHYSICAL REVIEW LETTERS 2023; 131:178201. [PMID: 37955486 DOI: 10.1103/physrevlett.131.178201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023]
Abstract
Networks and dense suspensions frequently reside near a boundary between soft (or fluidlike) and rigid (or solidlike) regimes. Transitions between these regimes can be driven by changes in structure, density, or applied stress or strain. In general, near the onset or loss of rigidity in these systems, dissipation-limiting heterogeneous nonaffine rearrangements dominate the macroscopic viscoelastic response, giving rise to diverging relaxation times and power-law rheology. Here, we describe a simple quantitative relationship between nonaffinity and the excess viscosity. We test this nonaffinity-viscosity relationship computationally and demonstrate its rheological consequences in simulations of strained filament networks and dense suspensions. We also predict critical signatures in the rheology of semiflexible and stiff biopolymer networks near the strain stiffening transition.
Collapse
Affiliation(s)
- Jordan L Shivers
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Abhinav Sharma
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| | - Fred C MacKintosh
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
12
|
Adhikari M, Karmakar S, Sastry S. Dependence of the Glass Transition and Jamming Densities on Spatial Dimension. PHYSICAL REVIEW LETTERS 2023; 131:168202. [PMID: 37925719 DOI: 10.1103/physrevlett.131.168202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/18/2023] [Indexed: 11/07/2023]
Abstract
We investigate the dynamics of soft sphere liquids through computer simulations for spatial dimensions from d=3 to 8, over a wide range of temperatures and densities. Employing a scaling of density-temperature-dependent relaxation times, we precisely identify the density ϕ_{0}, which marks the ideal glass transition in the hard sphere limit, and a crossover from sub- to super-Arrhenius temperature dependence. The difference between ϕ_{0} and the athermal jamming density ϕ_{J}, small in 3 and 4 dimensions, increases with dimension, with ϕ_{0}>ϕ_{J} for d>4. We compare our results with recent theoretical calculations.
Collapse
Affiliation(s)
- Monoj Adhikari
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, 560064 Bengaluru, India
| | - Smarajit Karmakar
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046 Telangana, India
| | - Srikanth Sastry
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, 560064 Bengaluru, India
| |
Collapse
|
13
|
Singh A, Saitoh K. Scaling relationships between viscosity and diffusivity in shear-thickening suspensions. SOFT MATTER 2023; 19:6631-6640. [PMID: 37599580 DOI: 10.1039/d3sm00510k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Dense suspensions often exhibit a dramatic response to large external deformation. The recent body of work has related this behavior to transition from an unconstrained lubricated state to a constrained frictional state. Here, we use numerical simulations to study the flow behavior and shear-induced diffusion of frictional non-Brownian spheres in two dimensions under simple shear flow. We first show that both viscosity η and diffusivity D/ of the particles increase under characteristic shear stress, which is associated with lubrication to frictional transition. Subsequently, we propose a one-to-one relationship between viscosity and diffusivity using the length scale ξ associated with the size of collective motions (rigid clusters) of the particles. We demonstrate that η and D/ are controlled by ξ in two distinct flow regimes, i.e. in the frictionless and frictional states, where the one-to-one relationship is described as a crossover from D/ ∼ η (frictionless) to η1/3 (frictional). We also confirm that the proposed power laws are insensitive to the interparticle friction and system size.
Collapse
Affiliation(s)
- Abhinendra Singh
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Kuniyasu Saitoh
- Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| |
Collapse
|
14
|
Abbasian Chaleshtari Z, Salimi-Kenari H, Foudazi R. Glassy and compressed nanoemulsions stabilized with sodium dodecyl sulfate in the presence of poly(ethylene glycol)-diacrylate. SOFT MATTER 2023; 19:5989-6004. [PMID: 37497795 DOI: 10.1039/d3sm00349c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The rheology of concentrated nanoemulsions is critical for their formulation in various applications, such as pharmaceuticals, foods, cosmetics, and templating advanced materials. The rheological properties of nanoemulsions depend on interdroplet interactions, Laplace pressure, dispersed phase volume fraction, and continuous phase properties. The interdroplet forces can be tuned by background electrolytes (i.e., charge screening), surfactant type, the excess surfactant micelle concentration, and depletant molecules such as polymer chains. In the current research, we study the effect of varying the content of poly(ethylene glycol)-diacrylate (PEGDA) on the interfacial tension of the water-oil phase and rheological properties of concentrated nanoemulsions with 50% and 60% volume fractions. Sodium dodecyl sulfate (SDS) is used as the ionic surfactant. The final concentrated nanoemulsions are repulsive according to overall interaction potentials and are in the glass and compressed states based on the effective volume fraction estimation. They contain nearly same SDS concentration on the droplet surface and also in the bulk, but a different amount of PEGDA. The scaled rheological properties of the glassy nanoemulsions show a higher dependency on the PEGDA content and the possible effect of polymer-surfactant complexations compared to those of the compressed ones. This dependency is more pronounced in small strain amplitudes but not in large strains in the non-linear regime. These results provide insights into formulating concentrated nanoemulsions with controlled rheology for expanded application areas.
Collapse
Affiliation(s)
| | - Hamed Salimi-Kenari
- Faculty of Engineering & Technology, University of Mazandaran, Babolsar, Iran
| | - Reza Foudazi
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
15
|
Lin YT, Liu S, Bhat B, Kuan KY, Zhou W, Cobos IJ, Kwon JSI, Akbulut MES. pH- and temperature-responsive supramolecular assemblies with highly adjustable viscoelasticity: a multi-stimuli binary system. SOFT MATTER 2023. [PMID: 37449660 DOI: 10.1039/d3sm00549f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Stimuli-responsive materials are increasingly needed for the development of smart electronic, mechanical, and biological devices and systems relying on switchable, tunable, and adaptable properties. Herein, we report a novel pH- and temperature-responsive binary supramolecular assembly involving a long-chain hydroxyamino amide (HAA) and an inorganic hydrotrope, boric acid, with highly tunable viscous and viscoelastic properties. The system under investigation demonstrates a high degree of control over its viscosity, with the capacity to achieve over four orders of magnitude of control through the concomitant manipulation of pH and temperature. In addition, the transformation from non-Maxwellian to Maxwellian fluid behavior could also be induced by changing the pH and temperature. Switchable rheological properties were ascribed to the morphological transformation between spherical vesicles, aggregated/fused spherical vesicles, and bicontinuous gyroid structures revealed by cryo-TEM studies. The observed transitions are attributed to the modulation of the head group spacing between HAA molecules under different pH conditions. Specifically, acidic conditions induce electrostatic repulsion between the protonated amino head groups, leading to an increased spacing. Conversely, under basic conditions, the HAA head group spacing is reduced due to the intercalation of tetrahydroxyborate, facilitated by hydrogen bonding.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Bhargavi Bhat
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Kai-Yuan Kuan
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Wentao Zhou
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Ignacio Jose Cobos
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Joseph Sang-Il Kwon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Texas A&M Energy Institute, College Station, TX 77843, USA
| | - Mustafa E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Texas A&M Energy Institute, College Station, TX 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Pelargonio S, Zaccone A. Generalized Langevin equation with shear flow and its fluctuation-dissipation theorems derived from a Caldeira-Leggett Hamiltonian. Phys Rev E 2023; 107:064102. [PMID: 37464636 DOI: 10.1103/physreve.107.064102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/26/2023] [Indexed: 07/20/2023]
Abstract
We provide a first-principles derivation of the Langevin equation with shear flow and its corresponding fluctuation-dissipation theorems. Shear flow of simple fluids has been widely investigated by numerical simulations. Most studies postulate a Markovian Langevin equation with a simple shear drag term in the manner of Stokes. However, this choice has never been justified from first principles. We start from a particle-bath system described by a classical Caldeira-Leggett Hamiltonian modified by adding a term proportional to the strain-rate tensor according to Hoover's DOLLS method, and we derive a generalized Langevin equation for the sheared system. We then compute, analytically, the noise time-correlation functions in different regimes. Based on the intensity of the shear rate, we can distinguish between close-to-equilibrium and far-from-equilibrium states. According to the results presented here, the standard, simple, and Markovian form of the Langevin equation with shear flow postulated in the literature is valid only in the limit of extremely weak shear rates compared to the effective vibrational temperature of the bath. For even marginally higher shear rates, the (generalized) Langevin equation is strongly non-Markovian, and nontrivial fluctuation-dissipation theorems are derived.
Collapse
Affiliation(s)
- Sara Pelargonio
- Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133 Milan, Italy
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg
| | - Alessio Zaccone
- Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133 Milan, Italy
| |
Collapse
|
17
|
Avila-Sierra A, Lavoisier A, Timpe C, Kuehl P, Wagner L, Tournier C, Ramaioli M. Paediatric Solid Oral Dosage Forms for Combination Products: Improving In Vitro Swallowability of Minitablets Using Binary Mixtures with Pellets. Eur J Pharm Sci 2023:106471. [PMID: 37210000 DOI: 10.1016/j.ejps.2023.106471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
There is a growing interest in enhancing the acceptability of paediatric pharmaceutical formulations. Solid oral dosage forms (SODF) are being considered as an alternative to liquid formulations, but they may compromise palatability as large volumes may be required. We hypothesised that a binary mixture of paediatric SODF, designed to increase the formulation maximum packing fraction, could reduce the suspension viscosity and facilitate swallowing. Using the Paediatric Soft Robotic Tongue (PSRT) - an in vitro device inspired by the anatomy and physiology of 2-year-old children - we investigated the oral phase of swallowing for multi-particulate formulations, i.e., pellets (350 and 700 µm particles), minitablets (MTs, 1.8 mm), and their binary mixtures (BM), by evaluating oral swallowing time, the percentage of particles swallowed, and post-swallow residues. We also conducted a systematic analysis of the effect of feeding method, bolus volume, carrier type, particle size, and particle volume fraction on pellets swallowability. The results demonstrated that the introduction of pellets affected the flowing ability of the carriers, increasing shear viscosity. The size of the pellets did not appear to influence particle swallowability but raising the particle volume fraction (v.f.) above 10% resulted in a decrease in the percentage of particles swallowed. At v.f. 0.4, pellets were easier to swallow (+ 13.1%) than MTs, being the administration method used highly dependent on the characteristics of the multi-particulate formulation under consideration. Finally, mixing MTs with only 24% of pellets improved particle swallowability, achieving swallowing levels similar to those of pellets alone. Thus, combining SODF, i.e., MTs and pellets, improves MT swallowability, and offers new possibilities for adjusting product palatability, being particularly attractive for combination products.
Collapse
Affiliation(s)
| | - Anais Lavoisier
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| | - Carsten Timpe
- F. Hoffmann-La Roche AG, Konzern-Hauptsitz Grenzacherstrasse 124, Basel, Switzerland
| | - Peter Kuehl
- F. Hoffmann-La Roche AG, Konzern-Hauptsitz Grenzacherstrasse 124, Basel, Switzerland
| | - Leonie Wagner
- F. Hoffmann-La Roche AG, Konzern-Hauptsitz Grenzacherstrasse 124, Basel, Switzerland
| | - Carole Tournier
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France; INRAE, PROBE research infrastructure, ChemoSens facility, 21000 Dijon, France
| | - Marco Ramaioli
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| |
Collapse
|
18
|
Sadhukhan S, Nandi SK. On the origin of universal cell shape variability in confluent epithelial monolayers. eLife 2022; 11:e76406. [PMID: 36563034 PMCID: PMC9833828 DOI: 10.7554/elife.76406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Cell shape is fundamental in biology. The average cell shape can influence crucial biological functions, such as cell fate and division orientation. But cell-to-cell shape variability is often regarded as noise. In contrast, recent works reveal that shape variability in diverse epithelial monolayers follows a nearly universal distribution. However, the origin and implications of this universality remain unclear. Here, assuming contractility and adhesion are crucial for cell shape, characterized via aspect ratio (r), we develop a mean-field analytical theory for shape variability. We find that all the system-specific details combine into a single parameter α that governs the probability distribution function (PDF) of r; this leads to a universal relation between the standard deviation and the average of r. The PDF for the scaled r is not strictly but nearly universal. In addition, we obtain the scaled area distribution, described by the parameter μ. Information of α and μ together can distinguish the effects of changing physical conditions, such as maturation, on different system properties. We have verified the theory via simulations of two distinct models of epithelial monolayers and with existing experiments on diverse systems. We demonstrate that in a confluent monolayer, average shape determines both the shape variability and dynamics. Our results imply that cell shape distribution is inevitable, where a single parameter describes both statics and dynamics and provides a framework to analyze and compare diverse epithelial systems. In contrast to existing theories, our work shows that the universal properties are consequences of a mathematical property and should be valid in general, even in the fluid regime.
Collapse
|
19
|
Nickel AC, Denton AR, Houston JE, Schweins R, Plivelic TS, Richtering W, Scotti A. Beyond simple self-healing: How anisotropic nanogels adapt their shape to their environment. J Chem Phys 2022; 157:194901. [DOI: 10.1063/5.0119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The response of soft colloids to crowding depends sensitively on the particles’ compressibility. Nanogel suspensions provide model systems that are often studied to better understand the properties of soft materials and complex fluids from the formation of colloidal crystals to the flow of viruses, blood, or platelet cells in the body. Large spherical nanogels, when embedded in a matrix of smaller nanogels, have the unique ability to spontaneously deswell to match their size to that of the nanogel composing the matrix. In contrast to hard colloids, this self-healing mechanism allows for crystal formation without giving rise to point defects or dislocations. Here, we show that anisotropic ellipsoidal nanogels adapt both their size and their shape depending on the nature of the particles composing the matrix in which they are embedded. Using small-angle neutron scattering with contrast variation, we show that ellipsoidal nanogels become spherical when embedded in a matrix of spherical nanogels. In contrast, the anisotropy of the ellipsoid is enhanced when they are embedded in a matrix of anisotropic nanogels. Our experimental data are supported by Monte Carlo simulations that reproduce the trend of decreasing aspect ratio of ellipsoidal nanogels with increasing crowding by a matrix of spherical nanogels.
Collapse
Affiliation(s)
- Anne C. Nickel
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | | | - Ralf Schweins
- Institut Laue-Langevin ILL DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Tomàs S. Plivelic
- MAX IV Laboratory, Lund University, P.O. Box 118, 22100 Lund, Sweden
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
20
|
Kim S, Hilgenfeldt S. Structural Measures as Guides to Ultrastable States in Overjammed Packings. PHYSICAL REVIEW LETTERS 2022; 129:168001. [PMID: 36306772 DOI: 10.1103/physrevlett.129.168001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Jammed, disordered packings of given sets of particles possess a multitude of equilibrium states with different mechanical properties. Identifying and constructing desired states, e.g., of superior stability, is a complex task. Here, we show that in two-dimensional particle packings the energy of all metastable states (inherent structures) is reliably classified by simple scalar measures of local steric packing. These structural measures are insensitive to the particle interaction potential and so robust that they can be used to guide a modified swap algorithm that anneals polydisperse packings toward low-energy metastable states exceptionally fast. The low-energy states are extraordinarily stable against applied shear, so that the approach also efficiently identifies ultrastable packings.
Collapse
Affiliation(s)
- Sangwoo Kim
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106-5070, USA
| | - Sascha Hilgenfeldt
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
21
|
Vaibhav V, Horbach J, Chaudhuri P. Rheological response of a glass-forming liquid having large bidispersity. SOFT MATTER 2022; 18:4427-4436. [PMID: 35638914 DOI: 10.1039/d2sm00326k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using extensive numerical simulations, we investigate the flow behaviour of a model glass-forming binary mixture whose constituent particles have a large size ratio. The rheological response to applied shear is studied in the regime where the larger species are spatially predominant. We demonstrate that the macroscopic rigidity that emerges with increasing density occurs in the regime where the larger species undergo a glass transition while the smaller species continue to be highly diffusive. We analyse the interplay between the timescale imposed by the shear and the quiescent relaxation dynamics of the two species to provide a microscopic insight into the observed rheological response. Finally, by tuning the composition of the mixture, we illustrate that the systematic insertion of the smaller particles affects the rheology by lowering of viscosity of the system.
Collapse
Affiliation(s)
- Vinay Vaibhav
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Jürgen Horbach
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraß e 1, 40225 Düsseldorf, Germany.
| | - Pinaki Chaudhuri
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
22
|
Williams I, Oğuz EC, Löwen H, Poon WCK, Royall CP. The rheology of confined colloidal hard disks. J Chem Phys 2022; 156:184902. [DOI: 10.1063/5.0087444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colloids may be treated as “big atoms” so that they are good models for atomic and molecular systems. Colloidal hard disks are, therefore, good models for 2d materials, and although their phase behavior is well characterized, rheology has received relatively little attention. Here, we exploit a novel, particle-resolved, experimental setup and complementary computer simulations to measure the shear rheology of quasi-hard-disk colloids in extreme confinement. In particular, we confine quasi-2d hard disks in a circular “corral” comprised of 27 particles held in optical traps. Confinement and shear suppress hexagonal ordering that would occur in the bulk and create a layered fluid. We measure the rheology of our system by balancing drag and driving forces on each layer. Given the extreme confinement, it is remarkable that our system exhibits rheological behavior very similar to unconfined 2d and 3d hard particle systems, characterized by a dynamic yield stress and shear-thinning of comparable magnitude. By quantifying particle motion perpendicular to shear, we show that particles become more tightly confined to their layers with no concomitant increase in density upon increasing the shear rate. Shear thinning is, therefore, a consequence of a reduction in dissipation due to weakening in interactions between layers as the shear rate increases. We reproduce our experiments with Brownian dynamics simulations with Hydrodynamic Interactions (HI) included at the level of the Rotne–Prager tensor. That the inclusion of HI is necessary to reproduce our experiments is evidence of their importance in transmission of momentum through the system.
Collapse
Affiliation(s)
- Ian Williams
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Erdal C. Oğuz
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Wilson C. K. Poon
- SUPA and School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - C. Patrick Royall
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| |
Collapse
|
23
|
Kirchner KA, Cassar DR, Zanotto ED, Ono M, Kim SH, Doss K, Bødker ML, Smedskjaer MM, Kohara S, Tang L, Bauchy M, Wilkinson CJ, Yang Y, Welch RS, Mancini M, Mauro JC. Beyond the Average: Spatial and Temporal Fluctuations in Oxide Glass-Forming Systems. Chem Rev 2022; 123:1774-1840. [PMID: 35511603 DOI: 10.1021/acs.chemrev.1c00974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atomic structure dictates the performance of all materials systems; the characteristic of disordered materials is the significance of spatial and temporal fluctuations on composition-structure-property-performance relationships. Glass has a disordered atomic arrangement, which induces localized distributions in physical properties that are conventionally defined by average values. Quantifying these statistical distributions (including variances, fluctuations, and heterogeneities) is necessary to describe the complexity of glass-forming systems. Only recently have rigorous theories been developed to predict heterogeneities to manipulate and optimize glass properties. This article provides a comprehensive review of experimental, computational, and theoretical approaches to characterize and demonstrate the effects of short-, medium-, and long-range statistical fluctuations on physical properties (e.g., thermodynamic, kinetic, mechanical, and optical) and processes (e.g., relaxation, crystallization, and phase separation), focusing primarily on commercially relevant oxide glasses. Rigorous investigations of fluctuations enable researchers to improve the fundamental understanding of the chemistry and physics governing glass-forming systems and optimize structure-property-performance relationships for next-generation technological applications of glass, including damage-resistant electronic displays, safer pharmaceutical vials to store and transport vaccines, and lower-attenuation fiber optics. We invite the reader to join us in exploring what can be discovered by going beyond the average.
Collapse
Affiliation(s)
- Katelyn A Kirchner
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Daniel R Cassar
- Department of Materials Engineering, Federal University of São Carlos, São Carlos, Sao Paulo 13565-905, Brazil
- Ilum School of Science, Brazilian Center for Research in Energy and Materials, Campinas, Sao Paulo 13083-970, Brazil
| | - Edgar D Zanotto
- Department of Materials Engineering, Federal University of São Carlos, São Carlos, Sao Paulo 13565-905, Brazil
| | - Madoka Ono
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Materials Integration Laboratories, AGC Incorporated, Yokohama, Kanagawa 230-0045, Japan
| | - Seong H Kim
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Karan Doss
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mikkel L Bødker
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Morten M Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Shinji Kohara
- Research Center for Advanced Measurement and Characterization National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Longwen Tang
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Mathieu Bauchy
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Collin J Wilkinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Research and Development, GlassWRX, Beaufort, South Carolina 29906, United States
| | - Yongjian Yang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rebecca S Welch
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew Mancini
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
24
|
Sun A, Wang Y, Chen Y, Shang J, Zheng J, Yu S, Su S, Sun X, Zhang J. Turbulent-like velocity fluctuations in two-dimensional granular materials subject to cyclic shear. SOFT MATTER 2022; 18:983-989. [PMID: 35014635 DOI: 10.1039/d1sm01516h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We perform a systematic experimental study to investigate the velocity fluctuations in the two-dimensional granular matter of low and high friction coefficients subjected to cyclic shear of a range of shear amplitudes, whose velocity fields are strikingly turbulent-like with vortices of different scales. The scaling behaviors of both the transverse velocity power spectra ET(k) ∝ k-αT and, more severely, the longitudinal velocity power spectra EL(k) ∝ k-αL are affected by the prominent peak centered around k ≈ 2π of the inter-particle distance due to the static structure factor of the hard-particle nature in contrast to the real turbulence. To reduce the strong peak effect to the actual values of αν (the subscript 'ν' refers to either T or L), we subsequently analyze the second-order velocity structure functions of S(2)ν(r) in real space, which show the power-law scalings of S(2)ν(r) ∝ rβν for both modes. From the values of βν, we deduce the corresponding αν from the scaling relations of αν = βν + 2. The deduced values of αν increase continuously with the shear amplitude γm, showing no signature of yielding transition, and are slightly larger than αν = 2.0 at the limit of γm → 0, which corresponds to the elastic limit of the system, for all γm. The inter-particle friction coefficients show no significant effect on the turbulent-like velocity fluctuations. Our findings suggest that the turbulent-like collective particle motions are governed by both the elasticity and plasticity in cyclically sheared granular materials.
Collapse
Affiliation(s)
- Aile Sun
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinqiao Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yangrui Chen
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jin Shang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jie Zheng
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shuchang Yu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siyuan Su
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xulai Sun
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jie Zhang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Wu B, Iwashita T, Chen WR. Scaling of Shear Rheology of Concentrated Charged Colloidal Suspensions across Glass Transition. J Phys Chem B 2022; 126:922-927. [DOI: 10.1021/acs.jpcb.1c06683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Wu
- Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | - Takuya Iwashita
- Department of Integrated Science and Technology, Oita University, Oita 870-1192, Japan
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
26
|
Cuny N, Bertin E, Mari R. Dynamics of microstructure anisotropy and rheology of soft jammed suspensions. SOFT MATTER 2022; 18:328-339. [PMID: 34881757 DOI: 10.1039/d1sm01345a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We explore the rheology predicted by a recently proposed constitutive model for jammed suspensions of soft elastic particles derived from particle-level dynamics [Cuny et al., Phys. Rev. Lett., 2021, 127, 218003]. Our model predicts that the orientation of the anisotropy of the microstructure, governed by an interplay between advection and contact elasticity, plays a key role at yielding and in flow. It generates normal stress differences contributing significantly to the yield criterion and Trouton ratio. It gives rise to non-trivial transients such as stress overshoots in step increases of shear rate, residual stresses after flow cessation and power-law decay of the shear rate in creep. Finally, it explains the collapse of storage modulus as measured in parallel superposition for a yielded suspension.
Collapse
Affiliation(s)
- Nicolas Cuny
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.
| | - Eric Bertin
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.
| | - Romain Mari
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.
| |
Collapse
|
27
|
Configurational fingerprints of multicellular living systems. Proc Natl Acad Sci U S A 2021; 118:2109168118. [PMID: 34716269 DOI: 10.1073/pnas.2109168118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/14/2021] [Indexed: 01/23/2023] Open
Abstract
Cells cooperate as groups to achieve structure and function at the tissue level, during which specific material characteristics emerge. Analogous to phase transitions in classical physics, transformations in the material characteristics of multicellular assemblies are essential for a variety of vital processes including morphogenesis, wound healing, and cancer. In this work, we develop configurational fingerprints of particulate and multicellular assemblies and extract volumetric and shear order parameters based on this fingerprint to quantify the system disorder. Theoretically, these two parameters form a complete and unique pair of signatures for the structural disorder of a multicellular system. The evolution of these two order parameters offers a robust and experimentally accessible way to map the phase transitions in expanding cell monolayers and during embryogenesis and invasion of epithelial spheroids.
Collapse
|
28
|
Oyama N, Mizuno H, Ikeda A. Instantaneous Normal Modes Reveal Structural Signatures for the Herschel-Bulkley Rheology in Sheared Glasses. PHYSICAL REVIEW LETTERS 2021; 127:108003. [PMID: 34533339 DOI: 10.1103/physrevlett.127.108003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The Herschel-Bulkley law, a universal constitutive relation, has been empirically known to be applicable to a vast range of soft materials, including sheared glasses. Although the Herschel-Bulkley law has attracted public attention, its structural origin has remained an open question. In this Letter, by means of atomistic simulation of binary Lennard-Jones glasses, we report that the instantaneous normal modes with negative eigenvalues, or so-called imaginary modes, serve as the structural signatures for the Herschel-Bulkley rheology in sheared glasses.
Collapse
Affiliation(s)
- Norihiro Oyama
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Mathematics for Advanced Materials-OIL, AIST, Sendai 980-8577, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
29
|
Coquand O, Sperl M. Rheology of granular liquids in extensional flows: Beyond the μ(I)-law. Phys Rev E 2021; 104:014604. [PMID: 34412321 DOI: 10.1103/physreve.104.014604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/21/2021] [Indexed: 11/07/2022]
Abstract
The Granular Integration Through Transients (GITT) formalism gives a theoretical description of the rheology of moderately dense granular flows and suspensions. In this work, we extend the GITT equations beyond the case of simple shear flows studied before. Applying this to the particular example of extensional flows, we show that the predicted behavior is somewhat different from that of the more frequently studied simple shear case, as illustrated by the possibility of nonmonotonous evolution of the effective friction coefficient μ with the inertial number I. By the reduction of the GITT equations to simple toy models, we provide a generalization of the μ(I)-law true for any type of flow deformation. Our analysis also includes a study of the Trouton ratio, which is shown to behave quite similarly to that of dense colloidal suspensions.
Collapse
Affiliation(s)
- O Coquand
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Cologne, Germany
| | - M Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Cologne, Germany.,Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany
| |
Collapse
|
30
|
Das D, Acharya P, Ramola K. Long-range correlations in pinned athermal networks. Phys Rev E 2021; 104:014503. [PMID: 34412209 DOI: 10.1103/physreve.104.014503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
We derive exact results for displacement fields that develop as a response to external pinning forces in two-dimensional athermal networks. For a triangular lattice arrangement of particles interacting through soft potentials, we develop a Green's function formalism which we use to derive exact results for displacement fields produced by localized external forces. We show that in the continuum limit the displacement fields decay as 1/r at large distances r away from a force dipole. Finally, we extend our formulation to study correlations in the displacement fields produced by the external pinning forces. We show that uncorrelated pinned forces at each vertex give rise to long-range correlations in displacements in athermal systems, with a nontrivial system size dependence. We verify our predictions with numerical simulations of athermal networks in two dimensions.
Collapse
Affiliation(s)
- Debankur Das
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Pappu Acharya
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Kabir Ramola
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| |
Collapse
|
31
|
Abstract
Abstract
The review presents current research results for Carbopol-based microgels as yield-stress materials, covering three aspects: chemical, physical and rheological. Such a joint three-aspect study has no analog in the literature. The chemical aspects of Carbopol polymers are presented in terms of a cross-linking polymerization of acrylic acid, their molecular structure, microgel formulation, polyacid dissociation and neutralization, osmotic pressure and associated immense microgel swelling. The physical characterization is focused on models of the shear-induced solid-to-liquid transition of microgels, which are formed of mesoscopic particles typical for soft matter materials. Models that describe interparticle effects are presented to explain the energy states of microgel particles at the mesoscale of scrutiny. Typical representatives of the models utilize attributes of jamming dispersions, micromechanical and polyelectrolyte reactions. Selected relationships that result from the models, such as scaling rules and nondimensional flow characteristics are also presented. The rheological part presents the discussion of problems of yield stress in 2D and 3D deformations, appearance and magnitude of the wall slip. The theory and characteristics of Carbopol microgel deformation in rotational rheometers are presented with graphs for the steady-state measurements, stress-controlled oscillation and two types of transient shear deformation. The review is concluded with suggestions for future research.
Collapse
Affiliation(s)
- Zdzisław Jaworski
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Tadeusz Spychaj
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Anna Story
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Grzegorz Story
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| |
Collapse
|
32
|
Glass and Jamming Rheology in Soft Particles Made of PNIPAM and Polyacrylic Acid. Int J Mol Sci 2021; 22:ijms22084032. [PMID: 33919803 PMCID: PMC8070831 DOI: 10.3390/ijms22084032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022] Open
Abstract
The phase behaviour of soft colloids has attracted great attention due to the large variety of new phenomenologies emerging from their ability to pack at very high volume fractions. Here we report rheological measurements on interpenetrated polymer network microgels composed of poly(N-isopropylacrylamide) (PNIPAM) and polyacrylic acid (PAAc) at fixed PAAc content as a function of weight concentration. We found three different rheological regimes characteristic of three different states: a Newtonian shear-thinning fluid, an attractive glass characterized by a yield stress, and a jamming state. We discuss the possible molecular mechanisms driving the formation of these states.
Collapse
|
33
|
Cao C, Liao J, Breedveld V, Weeks ER. Rheology finds distinct glass and jamming transitions in emulsions. SOFT MATTER 2021; 17:2587-2595. [PMID: 33514990 DOI: 10.1039/d0sm02097d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We study the rheology of monodisperse and bidisperse emulsions with various droplet sizes (1-2 μm diameter). Above a critical volume fraction φc, these systems exhibit solid-like behavior and a yield stress can be detected. Previous experiments suggest that for small thermal particles, rheology will see a glass transition at φc = φg ≈ 0.58; for large athermal systems, rheology will see a jamming transition at φc = φJ ≈ 0.64. However, simulations point out that at the crossover of thermal and athermal regimes, the glass and jamming transitions may both be observed in the same sample. Here we conduct an experiment by shearing four oil-in-water emulsions with a rheometer. We observe both a glass and a jamming transition for our smaller diameter droplets, and only a jamming transition for our larger diameter droplets. The bidisperse sample behaves similarly to the small droplet sample, with two transitions observed. Our rheology data are well-fit by both the Herschel-Bulkley model and the three component model. Based on the fitting parameters, our raw rheological data would not collapse onto a master curve. Our results show that liquid-solid transitions in dispersions are not universal, but depend on particle size.
Collapse
Affiliation(s)
- Cong Cao
- Department of Physics, Emory University, Atlanta, GA 30322, USA.
| | - Jianshan Liao
- School of Chemical & Biomolecular Engineering, Georgia Tech, Atlanta, GA 30332, USA
| | - Victor Breedveld
- School of Chemical & Biomolecular Engineering, Georgia Tech, Atlanta, GA 30332, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
34
|
Pillitteri S, Opsomer E, Lumay G, Vandewalle N. How size ratio and segregation affect the packing of binary granular mixtures. SOFT MATTER 2020; 16:9094-9100. [PMID: 32914151 DOI: 10.1039/d0sm00939c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For reaching high packing fractions, grains of various sizes are often mixed together allowing the small grains to fill the voids created by the large ones. However, in most cases, granular segregation occurs leading to lower packing fractions. We performed a wide set of experiments with different binary granular systems, proving that two main parameters are respectively the volume fraction f of small beads and the grain size ratio α. In addition, we show how granular segregation affects the global packing fraction. We propose a model with a strong dependency on α that takes into account possible granular segregation. Our model is in good agreement with both earlier experimental and simulation data.
Collapse
Affiliation(s)
| | - Eric Opsomer
- Quartier Agora, allée du six Août 19, Liège, Belgium.
| | | | | |
Collapse
|
35
|
Strickland DJ, Melchert DS, Hor JL, Ortiz CP, Lee D, Gianola DS. Microscopic origin of shear banding as a localized driven glass transition in compressed colloidal pillars. Phys Rev E 2020; 102:032605. [PMID: 33075911 DOI: 10.1103/physreve.102.032605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Here we report on compression experiments of colloidal pillars in which the evolution of a shear band can be followed at the particle level during deformation. Quasistatic deformation results in dilation and anisotropic changes in coordination in a localized band of material. Additionally, a transition from solid- to liquidlike mechanical response accompanies the structural change in the band, as evidenced by saturation of the packing fraction at the glass transition point, a diminishing ability to host anelastic strains, and a rapid decay in the long-range strain correlations. Overall, our results suggest that shear banding quantitatively resembles a localized, driven glass transition.
Collapse
Affiliation(s)
| | - Drew S Melchert
- University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Jyo Lyn Hor
- University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Carlos P Ortiz
- University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Daeyeon Lee
- University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Daniel S Gianola
- University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
36
|
Coquand O, Sperl M, Kranz WT. Integration through transients approach to the μ(I) rheology. Phys Rev E 2020; 102:032602. [PMID: 33075983 DOI: 10.1103/physreve.102.032602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
This work generalizes the granular integration through transients formalism introduced by Kranz et al. [Phys. Rev. Lett. 121, 148002 (2018)10.1103/PhysRevLett.121.148002] to the determination of the pressure. We focus on the Bagnold regime and provide theoretical support to the empirical μ(I) rheology laws that have been successfully applied in many granular flow problems. In particular, we confirm that the interparticle friction is irrelevant in the regime where the μ(I) laws apply.
Collapse
Affiliation(s)
- O Coquand
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - M Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
- Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
| | - W T Kranz
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
- Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
| |
Collapse
|
37
|
Simmons J, Nickels JD, Michalski M, Grossutti M, Shamana H, Stanley CB, Schwan AL, Katsaras J, Dutcher JR. Structure, Hydration, and Interactions of Native and Hydrophobically Modified Phytoglycogen Nanoparticles. Biomacromolecules 2020; 21:4053-4062. [DOI: 10.1021/acs.biomac.0c00870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John Simmons
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jonathan D. Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Michelle Michalski
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Michael Grossutti
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hurmiz Shamana
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Christopher B. Stanley
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Adrian L. Schwan
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John Katsaras
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - John R. Dutcher
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
38
|
Tsai JC, Chou MR, Huang PC, Fei HT, Huang JR. Soft granular particles sheared at a controlled volume: rate-dependent dynamics and the solid-fluid transition. SOFT MATTER 2020; 16:7535-7543. [PMID: 32700708 DOI: 10.1039/d0sm00405g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the responses of fluid-immersed soft hydrogel spheres that are sheared under controlled volume fractions. Slippery, deformable particles along with the density-matched interstitial fluid are sandwiched between two opposing rough cones, allowing studies for a wide range of volume fraction φ both above and below the jamming of granular suspension. We utilize sudden cessations of shearing, accompanied by refraction-matched internal imaging, to supplement the conventional flow-curve measurements. At sufficiently high volume fractions, the settling of particles after the cessations exhibits a continuous yet distinct transition over the change of the shear rate. Such changes back out the qualitative difference in the state of flowing prior to the cessations: the quasi-static yielding of a tightly packed network, as opposed to the rapid sliding of particles mediated by the interstitial fluid whose dynamics depends on the driving rate. In addition, we determine the solid-fluid transition using two independent methods: the extrapolation of stress residues and the estimated yield stress from high values of φ, and the settling of particles upon shear cessations as φ goes across the transition. We also verify the power law on values of characteristic stress with respect to the distance from jamming φ - φc, with an exponent close to 2. These results demonstrate a multitude of relaxation timescales behind the dynamics of soft particles, and raise questions on how we extend the existing paradigms of the flow of a densely packed system when the softness is actively involved.
Collapse
Affiliation(s)
- J-C Tsai
- Institute of Physics, Academia Sinica, Taipei, Taiwan.
| | - M-R Chou
- Institute of Physics, Academia Sinica, Taipei, Taiwan. and Department of Physics, National Taiwan University, Taiwan
| | - P-C Huang
- Institute of Physics, Academia Sinica, Taipei, Taiwan. and Department of Physics, National Taiwan University, Taiwan
| | - H-T Fei
- Institute of Physics, Academia Sinica, Taipei, Taiwan.
| | - J-R Huang
- Institute of Physics, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
39
|
Voigtmann T, Siebenbürger M, Amann CP, Egelhaaf SU, Fritschi S, Krüger M, Laurati M, Mutch KJ, Samwer KH. Rheology of colloidal and metallic glass formers. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04654-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractColloidal hard-sphere suspensions are convenient experimental models to understand soft matter, and also by analogy the structural-relaxation behavior of atomic or small-molecular fluids. We discuss this analogy for the flow and deformation behavior close to the glass transition. Based on a mapping of temperature to effective hard-sphere packing, the stress–strain curves of typical bulk metallic glass formers can be quantitatively compared with those of hard-sphere suspensions. Experiments on colloids give access to the microscopic structure under deformation on a single-particle level, providing insight into the yielding mechanisms that are likely also relevant for metallic glasses. We discuss the influence of higher-order angular signals in connection with non-affine particle rearrangements close to yielding. The results are qualitatively explained on the basis of the mode-coupling theory. We further illustrate the analogy of pre-strain dependence of the linear-elastic moduli using data on PS-PNiPAM suspensions.
Collapse
|
40
|
Thompson SW, Guimarães TR, Zetterlund PB. RAFT Emulsion Polymerization: MacroRAFT Agent Self-Assembly Investigated Using a Solvachromatic Dye. Biomacromolecules 2020; 21:4577-4590. [DOI: 10.1021/acs.biomac.0c00685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Steven W. Thompson
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
41
|
Otsuki M, Hayakawa H. Shear jamming, discontinuous shear thickening, and fragile states in dry granular materials under oscillatory shear. Phys Rev E 2020; 101:032905. [PMID: 32289976 DOI: 10.1103/physreve.101.032905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/26/2020] [Indexed: 11/07/2022]
Abstract
We numerically study the linear response of two-dimensional frictional granular materials under oscillatory shear. The storage modulus G^{'} and the loss modulus G^{''} in the zero strain rate limit depend on the initial strain amplitude of the oscillatory shear before measurement. The shear jammed state (satisfying G^{'}>0) can be observed at an amplitude greater than a critical initial strain amplitude. The fragile state is defined by the emergence of liquid-like and solid-like states depending on the form of the initial shear. In this state, the observed G^{'} after the reduction of the strain amplitude depends on the phase of the external shear strain. The loss modulus G^{''} exhibits a discontinuous jump corresponding to discontinuous shear thickening in the fragile state.
Collapse
Affiliation(s)
- Michio Otsuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
42
|
Saitoh K, Hatano T, Ikeda A, Tighe BP. Stress Relaxation above and below the Jamming Transition. PHYSICAL REVIEW LETTERS 2020; 124:118001. [PMID: 32242697 DOI: 10.1103/physrevlett.124.118001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
We numerically investigate stress relaxation in soft athermal disks to reveal critical slowing down when the system approaches the jamming point. The exponents describing the divergence of the relaxation time differ dramatically depending on whether the transition is approached from the jammed or unjammed phase. This contrasts sharply with conventional dynamic critical scaling scenarios, where a single exponent characterizes both sides. We explain this surprising difference in terms of the vibrational density of states, which is a key ingredient of linear viscoelastic theory. The vibrational density of states exhibits an extra slow mode that emerges below jamming, which we utilize to demonstrate the anomalous exponent below jamming.
Collapse
Affiliation(s)
- Kuniyasu Saitoh
- Research Alliance Center for Mathematical Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takahiro Hatano
- Department of Earth and Space Science, Osaka University, 560-0043 Osaka, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo 3-8-1, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| |
Collapse
|
43
|
Hoshino T, Fujinami S, Nakatani T, Kohmura Y. Dynamical Heterogeneity near Glass Transition Temperature under Shear Conditions. PHYSICAL REVIEW LETTERS 2020; 124:118004. [PMID: 32242701 DOI: 10.1103/physrevlett.124.118004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
We experimentally studied the shear effect on dynamical heterogeneity near glass transition temperature. X-ray photon correlation spectroscopy was utilized to study the dynamics of polyvinyl acetate with tracer particles near its glass transition temperature, to determine the local shear rate from the anisotropic behavior of the time autocorrelation function and to calculate the dynamical heterogeneity using higher-order correlation function. The obtained results show a decrease in the dynamical heterogeneity and faster dynamics with increasing shear rate. This is the first experimental result that proved the predictions of previous molecular dynamics simulations.
Collapse
Affiliation(s)
- Taiki Hoshino
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - So Fujinami
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomotaka Nakatani
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiki Kohmura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
44
|
Roy S, Tirumkudulu MS. Micro-mechanical theory of shear yield stress for strongly flocculated colloidal gel. SOFT MATTER 2020; 16:1801-1809. [PMID: 31970381 DOI: 10.1039/c9sm01784d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shear yield stress is an important parameter in the processing of colloidal suspensions as it characterizes the solid-to-fluid transition. Although shear rheology of colloidal gel is of widespread academic and industrial interest, first principles theory that connects the microscopic properties to the macroscopic mechanical response in a self-consistent manner is lacking. In this work, we derive a constitutive relation to predict the yield stress for a strongly attractive gel undergoing quasi-static shear deformation as a function of volume fraction, inter-particle potential, contact scale properties and the micro-structure of a strongly-aggregated colloidal gel. The model also predicts the strain at which the colloidal gel network will yield under shear load. To test the model, discrete element simulation is performed using a non-central potential with friction while accounting for the rolling resistance, which is important in real colloidal gel systems. The theoretical predictions are not only in good agreement with the simulation results, but also with previous experiments.
Collapse
Affiliation(s)
- Saikat Roy
- Dept. of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
45
|
Ikeda A, Kawasaki T, Berthier L, Saitoh K, Hatano T. Universal Relaxation Dynamics of Sphere Packings below Jamming. PHYSICAL REVIEW LETTERS 2020; 124:058001. [PMID: 32083930 DOI: 10.1103/physrevlett.124.058001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/28/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
We show that non-Brownian suspensions of repulsive spheres below jamming display a slow relaxational dynamics with a characteristic timescale that diverges at jamming. This slow timescale is fully encoded in the structure of the unjammed packing and can be readily measured via the vibrational density of states. We show that the corresponding dynamic critical exponent is the same for randomly generated and sheared packings. Our results show that a wide variety of physical situations, from suspension rheology to algorithmic studies of the jamming transition are controlled by a unique diverging timescale, with a universal critical exponent.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Kuniyasu Saitoh
- Research Alliance Center for Mathematical Sciences & WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Takahiro Hatano
- Department of Earth and Space Science, Osaka University, 560-0043 Osaka, Japan
| |
Collapse
|
46
|
Majka M, Góra PF. Effective one-component model of binary mixture: molecular arrest induced by the spatially correlated stochastic dynamics. Sci Rep 2019; 9:19661. [PMID: 31873077 PMCID: PMC6927984 DOI: 10.1038/s41598-019-54321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
Spatially correlated noise (SCN), i.e. the thermal noise that affects neighbouring particles in a similar manner, is ubiquitous in soft matter systems. In this work, we apply the over-damped SCN-driven Langevin equations as an effective, one-component model of the dynamics in dense binary mixtures. We derive the thermodynamically consistent fluctuation-dissipation relation for SCN to show that it predicts the molecular arrest resembling the glass transition, i.e. the critical slow-down of dynamics in the disordered phases. We show that the mechanism of singular dissipation is embedded in the dissipation matrix, accompanying SCN. We are also able to identify the characteristic length of collective dissipation, which diverges at critical packing. This novel physical quantity conveniently describes the difference between the ergodic and non-ergodic dynamics. The model is fully analytically solvable, one-dimensional and admits arbitrary interactions between the particles. It qualitatively reproduces several different modes of arrested disorder encountered in binary mixtures, including e.g. the re-entrant arrest. The model can be effectively compared to the mode coupling theory.
Collapse
Affiliation(s)
- M Majka
- Jagiellonian University, Marian Smoluchowski Institute of Physics, ul. prof. Stanisława Łojasiewicza 11, 30-348, Kraków, Poland.
| | - P F Góra
- Jagiellonian University, Marian Smoluchowski Institute of Physics, ul. prof. Stanisława Łojasiewicza 11, 30-348, Kraków, Poland
| |
Collapse
|
47
|
Mansel BW, Chen CY, Lin JM, Huang YS, Lin YC, Chen HL. Hierarchical Structure and Dynamics of a Polymer/Nanoparticle Hybrid Displaying Attractive Polymer–Particle Interaction. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bradley W. Mansel
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Yu Chen
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jhih-Min Lin
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yu-Shan Huang
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yu-Chiao Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31057, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
48
|
Experimental synthesis and characterization of rough particles for colloidal and granular rheology. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Chacko RN, Sollich P, Fielding SM. Slow Coarsening in Jammed Athermal Soft Particle Suspensions. PHYSICAL REVIEW LETTERS 2019; 123:108001. [PMID: 31573278 DOI: 10.1103/physrevlett.123.108001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/18/2019] [Indexed: 06/10/2023]
Abstract
We simulate a densely jammed, athermal assembly of repulsive soft particles immersed in a solvent. Starting from an initial condition corresponding to a quench from a high temperature, we find nontrivial slow dynamics driven by a gradual release of stored elastic energy, with the root mean squared particle speed decaying as a power law in time with a fractional exponent. This decay is accompanied by the presence within the assembly of spatially localized and temporally intermittent "hot spots" of nonaffine deformation, connected by long-ranged swirls in the velocity field, reminiscent of the local plastic events and long-ranged elastic propagation that have been intensively studied in sheared amorphous materials. The pattern of hot spots progressively coarsens, with the hot-spot size and separation slowly growing over time, and the associated correlation length in particle speed increasing as a sublinear power law. Each individual spot, however, exists only transiently within an overall picture of strongly intermittent dynamics.
Collapse
Affiliation(s)
- R N Chacko
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - P Sollich
- Institute for Theoretical Physics, University of Göttingen, 37077 Göttingen, Germany
- Department of Mathematics, King's College London, London WC2R 2LS, United Kingdom
| | - S M Fielding
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
50
|
|