1
|
Melcer RA, Gil A, Paul AK, Tiwari P, Umansky V, Heiblum M, Oreg Y, Stern A, Berg E. Heat conductance of the quantum Hall bulk. Nature 2024; 625:489-493. [PMID: 38172641 DOI: 10.1038/s41586-023-06858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
The quantum Hall effect is a prototypical realization of a topological state of matter. It emerges from a subtle interplay between topology, interactions and disorder1-9. The disorder enables the formation of localized states in the bulk that stabilize the quantum Hall states with respect to the magnetic field and carrier density3. Still, the details of the localized states and their contribution to transport remain beyond the reach of most experimental techniques10-31. Here we describe an extensive study of the bulk's heat conductance. Using a novel 'multiterminal' short device (on a scale of 10 µm), we separate the longitudinal thermal conductance, [Formula: see text] (owing to the bulk's contribution), from the topological transverse value [Formula: see text] by eliminating the contribution of the edge modes24. When the magnetic field is tuned away from the conductance plateau centre, the localized states in the bulk conduct heat efficiently ([Formula: see text]), whereas the bulk remains electrically insulating. Fractional states in the first excited Landau level, such as the [Formula: see text] and [Formula: see text], conduct heat throughout the plateau with a finite [Formula: see text]. We propose a theoretical model that identifies the localized states as the cause of the finite heat conductance, agreeing qualitatively with our experimental findings.
Collapse
Affiliation(s)
- Ron Aharon Melcer
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Avigail Gil
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arup Kumar Paul
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Priya Tiwari
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Vladimir Umansky
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Moty Heiblum
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Yuval Oreg
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Ady Stern
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Berg
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
Glidic P, Maillet O, Piquard C, Aassime A, Cavanna A, Jin Y, Gennser U, Anthore A, Pierre F. Quasiparticle Andreev scattering in the ν = 1/3 fractional quantum Hall regime. Nat Commun 2023; 14:514. [PMID: 36720855 PMCID: PMC9889737 DOI: 10.1038/s41467-023-36080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/12/2023] [Indexed: 02/02/2023] Open
Abstract
The scattering of exotic quasiparticles may follow different rules than electrons. In the fractional quantum Hall regime, a quantum point contact (QPC) provides a source of quasiparticles with field effect selectable charges and statistics, which can be scattered on an 'analyzer' QPC to investigate these rules. Remarkably, for incident quasiparticles dissimilar to those naturally transmitted across the analyzer, electrical conduction conserves neither the nature nor the number of the quasiparticles. In contrast with standard elastic scattering, theory predicts the emergence of a mechanism akin to the Andreev reflection at a normal-superconductor interface. Here, we observe the predicted Andreev-like reflection of an e/3 quasiparticle into a - 2e/3 hole accompanied by the transmission of an e quasielectron. Combining shot noise and cross-correlation measurements, we independently determine the charge of the different particles and ascertain the coincidence of quasielectron and fractional hole. The present work advances our understanding on the unconventional behavior of fractional quasiparticles, with implications toward the generation of novel quasi-particles/holes and non-local entanglements.
Collapse
Affiliation(s)
- P Glidic
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - O Maillet
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - C Piquard
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - A Aassime
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - A Cavanna
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - Y Jin
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - U Gennser
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - A Anthore
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France.
- Université Paris Cité, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France.
| | - F Pierre
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France.
| |
Collapse
|
3
|
Kumar R, Srivastav SK, Spånslätt C, Watanabe K, Taniguchi T, Gefen Y, Mirlin AD, Das A. Observation of ballistic upstream modes at fractional quantum Hall edges of graphene. Nat Commun 2022; 13:213. [PMID: 35017473 PMCID: PMC8752686 DOI: 10.1038/s41467-021-27805-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
The presence of "upstream" modes, moving against the direction of charge current flow in the fractional quantum Hall (FQH) phases, is critical for the emergence of renormalized modes with exotic quantum statistics. Detection of excess noise at the edge is a smoking gun for the presence of upstream modes. Here, we report noise measurements at the edges of FQH states realized in dual graphite-gated bilayer graphene devices. A noiseless dc current is injected at one of the edge contacts, and the noise generated at contacts at length, L = 4 μm and 10 μm away along the upstream direction is studied. For integer and particle-like FQH states, no detectable noise is measured. By contrast, for "hole-conjugate" FQH states, we detect a strong noise proportional to the injected current, unambiguously proving the existence of upstream modes. The noise magnitude remains independent of length, which matches our theoretical analysis demonstrating the ballistic nature of upstream energy transport, quite distinct from the diffusive propagation reported earlier in GaAs-based systems.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | | | - Christian Spånslätt
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, S-412 96, Göteborg, Sweden
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
- Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - K Watanabe
- National Institute of Material Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - T Taniguchi
- National Institute of Material Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Yuval Gefen
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alexander D Mirlin
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
- Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
- Petersburg Nuclear Physics Institute, 188300, St. Petersburg, Russia
- L. D. Landau Institute for Theoretical Physics RAS, 119334, Moscow, Russia
| | - Anindya Das
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
4
|
Protopopov IV, Samanta R, Mirlin AD, Gutman DB. Anomalous Hydrodynamics in a One-Dimensional Electronic Fluid. PHYSICAL REVIEW LETTERS 2021; 126:256801. [PMID: 34241527 DOI: 10.1103/physrevlett.126.256801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
We construct multimode viscous hydrodynamics for one-dimensional spinless electrons. Depending on the scale, the fluid has six (shortest lengths), four (intermediate, exponentially broad regime), or three (asymptotically long scales) hydrodynamic modes. Interaction between hydrodynamic modes leads to anomalous scaling of physical observables and waves propagating in the fluid. In the four-mode regime, all modes are ballistic and acquire Kardar-Parisi-Zhang (KPZ)-like broadening with asymmetric power-law tails. "Heads" and "tails" of the waves contribute equally to thermal conductivity, leading to ω^{-1/3} scaling of its real part. In the three-mode regime, the system is in the universality class of a classical viscous fluid [O. Narayan and S. Ramaswamy, Anomalous Heat Conduction in One-Dimensional Momentum-Conserving Systems, Phys. Rev. Lett. 89, 200601 (2002).PRLTAO0031-900710.1103/PhysRevLett.89.200601, H. Spohn, Nonlinear fluctuating hydrodynamics for anharmonic chains, J. Stat. Phys. 154, 1191 (2014).JSTPBS0022-471510.1007/s10955-014-0933-y]. Self-interaction of the sound modes results in a KPZ-like shape, while the interaction with the heat mode results in asymmetric tails. The heat mode is governed by Levy flight distribution, whose power-law tails give rise to ω^{-1/3} scaling of heat conductivity.
Collapse
Affiliation(s)
- I V Protopopov
- Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
- Landau Institute for Theoretical Physics, 119334 Moscow, Russia
| | - R Samanta
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel
| | - A D Mirlin
- Landau Institute for Theoretical Physics, 119334 Moscow, Russia
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76049 Karlsruhe, Germany
- Petersburg Nuclear Physics Institute, 188350 St. Petersburg, Russia
| | - D B Gutman
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
5
|
Feldman DE, Halperin BI. Fractional charge and fractional statistics in the quantum Hall effects. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:076501. [PMID: 34015771 DOI: 10.1088/1361-6633/ac03aa] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Quasiparticles with fractional charge and fractional statistics are key features of the fractional quantum Hall effect. We discuss in detail the definitions of fractional charge and statistics and the ways in which these properties may be observed. In addition to theoretical foundations, we review the present status of the experiments in the area. We also discuss the notions of non-Abelian statistics and attempts to find experimental evidence for the existence of non-Abelian quasiparticles in certain quantum Hall systems.
Collapse
Affiliation(s)
- D E Feldman
- Brown Theoretical Physics Center and Department of Physics, Brown University, Providence, RI 02912, United States of America
| | - Bertrand I Halperin
- Department of Physics, Harvard University, Cambridge, MA 02138, United States of America
| |
Collapse
|
6
|
Sivre E, Duprez H, Anthore A, Aassime A, Parmentier FD, Cavanna A, Ouerghi A, Gennser U, Pierre F. Electronic heat flow and thermal shot noise in quantum circuits. Nat Commun 2019; 10:5638. [PMID: 31822660 PMCID: PMC6904624 DOI: 10.1038/s41467-019-13566-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 11/09/2022] Open
Abstract
When assembling individual quantum components into a mesoscopic circuit, the interplay between Coulomb interaction and charge granularity breaks down the classical laws of electrical impedance composition. Here we explore experimentally the thermal consequences, and observe an additional quantum mechanism of electronic heat transport. The investigated, broadly tunable test-bed circuit is composed of a micron-scale metallic node connected to one electronic channel and a resistance. Heating up the node with Joule dissipation, we separately determine, from complementary noise measurements, both its temperature and the thermal shot noise induced by the temperature difference across the channel. The thermal shot noise predictions are thereby directly validated, and the electronic heat flow is revealed. The latter exhibits a contribution from the channel involving the electrons' partitioning together with the Coulomb interaction. Expanding heat current predictions to include the thermal shot noise, we find a quantitative agreement with experiments.
Collapse
Affiliation(s)
- E Sivre
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - H Duprez
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - A Anthore
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France.,Université de Paris, C2N, 91120, Palaiseau, France
| | - A Aassime
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - F D Parmentier
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - A Cavanna
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - A Ouerghi
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - U Gennser
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - F Pierre
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France.
| |
Collapse
|
7
|
Gresta D, Real M, Arrachea L. Optimal Thermoelectricity with Quantum Spin Hall Edge States. PHYSICAL REVIEW LETTERS 2019; 123:186801. [PMID: 31763901 DOI: 10.1103/physrevlett.123.186801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/16/2019] [Indexed: 06/10/2023]
Abstract
We study the thermoelectric properties of a Kramers pair of helical edge states of the quantum spin Hall effect coupled to a nanomagnet with a component of the magnetization perpendicular to the direction of the spin-orbit interaction of the host. We show that the transmission function of this structure has the desired qualities for optimal thermoelectric performance in the quantum coherent regime. For a single magnetic domain, there is a power generation close to the optimal bound. In a configuration with two magnetic domains with different orientations, pronounced peaks in the transmission functions and resonances lead to a high figure of merit. We provide estimates for the fabrication of this device with HgTe quantum-well topological insulators.
Collapse
Affiliation(s)
- Daniel Gresta
- International Center for Advanced Studies, ECyT-UNSAM, Campus Miguelete, 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
| | - Mariano Real
- Instituto Nacional de Tecnologia Industrial, INTI, Avenida General Paz 5445, 1650 Buenos Aires, Argentina
| | - Liliana Arrachea
- International Center for Advanced Studies, ECyT-UNSAM, Campus Miguelete, 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
| |
Collapse
|
8
|
Krähenmann T, Fischer SG, Röösli M, Ihn T, Reichl C, Wegscheider W, Ensslin K, Gefen Y, Meir Y. Auger-spectroscopy in quantum Hall edge channels and the missing energy problem. Nat Commun 2019; 10:3915. [PMID: 31477720 PMCID: PMC6718669 DOI: 10.1038/s41467-019-11888-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/05/2019] [Indexed: 11/09/2022] Open
Abstract
Quantum Hall edge channels offer an efficient and controllable platform to study quantum transport in one dimension. Such channels are a prospective tool for the efficient transfer of quantum information at the nanoscale, and play a vital role in exposing intriguing physics. Electric current along the edge carries energy and heat leading to inelastic scattering, which may impede coherent transport. Several experiments attempting to probe the concomitant energy redistribution along the edge reported energy loss via unknown mechanisms of inelastic scattering. Here we employ quantum dots to inject and extract electrons at specific energies, to spectrally analyse inelastic scattering inside quantum Hall edge channels. We show that the missing energy puzzle could be untangled by incorporating non-local Auger-like processes, in which energy is redistributed between spatially separate parts of the sample. Our theoretical analysis, accounting for the experimental results, challenges common-wisdom analyses which ignore such non-local decay channels.
Collapse
Affiliation(s)
- T Krähenmann
- Solid State Physics Laboratory, ETH Zürich, CH-8093, Zürich, Switzerland.
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2628CJ, the Netherlands.
| | - S G Fischer
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - M Röösli
- Solid State Physics Laboratory, ETH Zürich, CH-8093, Zürich, Switzerland
| | - T Ihn
- Solid State Physics Laboratory, ETH Zürich, CH-8093, Zürich, Switzerland
| | - C Reichl
- Solid State Physics Laboratory, ETH Zürich, CH-8093, Zürich, Switzerland
| | - W Wegscheider
- Solid State Physics Laboratory, ETH Zürich, CH-8093, Zürich, Switzerland
| | - K Ensslin
- Solid State Physics Laboratory, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Y Gefen
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yigal Meir
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
9
|
Bhattacharyya R, Banerjee M, Heiblum M, Mahalu D, Umansky V. Melting of Interference in the Fractional Quantum Hall Effect: Appearance of Neutral Modes. PHYSICAL REVIEW LETTERS 2019; 122:246801. [PMID: 31322402 DOI: 10.1103/physrevlett.122.246801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Indexed: 06/10/2023]
Abstract
We attempted to measure interference of the outer edge mode in the fractional quantum hall regime with an electronic Mach-zehnder interferometer. The visibility of the interferometer wore off as we approached ν_{B}=1 and the transmission of the quantum point contacts (QPCs) of the interferometer simultaneously developed a v=1/3 conductance plateau accompanied by shot noise. The appearance of shot noise on this plateau indicates the appearance of nontopological neutral modes resulting from edge reconstruction. We have confirmed the presence of upstream neutral modes measuring upstream noise emanating from the QPC. The lack of interference throughout the lowest Landau level was correlated with a proliferation of neutral modes.
Collapse
Affiliation(s)
- Rajarshi Bhattacharyya
- Braun Center of Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Mitali Banerjee
- Braun Center of Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Moty Heiblum
- Braun Center of Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Diana Mahalu
- Braun Center of Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Vladimir Umansky
- Braun Center of Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| |
Collapse
|
10
|
Väyrynen JI, Goldstein M, Gefen Y. Superconducting Correlations Out of Repulsive Interactions on a Fractional Quantum Hall Edge. PHYSICAL REVIEW LETTERS 2019; 122:236802. [PMID: 31298920 DOI: 10.1103/physrevlett.122.236802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Indexed: 06/10/2023]
Abstract
We consider a fractional quantum Hall bilayer system with an interface between quantum Hall states of filling fractions (ν_{top},ν_{bottom})=(1,1) and (1/3,2), motivated by a recent approach to engineering artificial edges [Y. Ronen et al., Nat. Phys. 14, 411 (2018)NPAHAX1745-247310.1038/s41567-017-0035-2]. We show that random tunneling and strong repulsive interactions within one of the layers will drive the system to a stable fixed point with two counterpropagating charge modes which have attractive interactions. As a result, slowly decaying correlations on the edge become predominantly superconducting. We discuss the resulting observable effects and derive general requirements for electron attraction in Abelian quantum Hall states. The broader interest in fractional quantum Hall edge with quasi-long-range superconducting order lies in the prospects of hosting exotic anyonic boundary excitations, which may serve as a platform for topological quantum computation.
Collapse
Affiliation(s)
- Jukka I Väyrynen
- Microsoft Quantum, Microsoft Station Q, University of California, Santa Barbara, California 93106-6105, USA
| | - Moshe Goldstein
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Gefen
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
11
|
Samanta R, Protopopov IV, Mirlin AD, Gutman DB. Thermal Transport in One-Dimensional Electronic Fluids. PHYSICAL REVIEW LETTERS 2019; 122:206801. [PMID: 31172760 DOI: 10.1103/physrevlett.122.206801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/03/2019] [Indexed: 06/09/2023]
Abstract
We study thermal conductivity for one-dimensional electronic fluids. The many-body Hilbert space is partitioned into bosonic and fermionic sectors that carry the thermal current in parallel. For times shorter than the bosonic umklapp time, the momenta of Bose and Fermi components are separately conserved, giving rise to the ballistic heat propagation and imaginary heat conductivity proportional to T/iω. The real part of thermal conductivity is controlled by decay processes of fermionic and bosonic excitations, leading to several regimes in frequency dependence. At lowest frequencies or longest length scales, the thermal transport is dominated by Lévy flights of low-momentum bosons that lead to a fractional scaling, ω^{-1/3} and L^{1/3}, of heat conductivity with the frequency ω and system size L, respectively.
Collapse
Affiliation(s)
- R Samanta
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel
| | - I V Protopopov
- Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
- Landau Institute for Theoretical Physics, 119334 Moscow, Russia
| | - A D Mirlin
- Landau Institute for Theoretical Physics, 119334 Moscow, Russia
- Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
- Petersburg Nuclear Physics Institute, 188350 St. Petersburg, Russia
| | - D B Gutman
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
12
|
Rosenblatt A, Lafont F, Levkivskyi I, Sabo R, Gurman I, Banitt D, Heiblum M, Umansky V. Transmission of heat modes across a potential barrier. Nat Commun 2017; 8:2251. [PMID: 29269780 PMCID: PMC5740138 DOI: 10.1038/s41467-017-02433-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022] Open
Abstract
Controlling the transmission of electrical current using a quantum point contact constriction paved a way to a large variety of experiments in mesoscopic physics. The increasing interest in heat transfer in such systems fosters questions about possible manipulations of quantum heat modes that do not carry net charge (neutral modes). Here we study the transmission of upstream neutral modes through a quantum point contact in fractional hole-conjugate quantum Hall states. Employing two different measurement techniques, we were able to render the relative spatial distribution of these chargeless modes with their charged counterparts. In these states, which were found to harbor more than one downstream charge mode, the upstream neutral modes are found to flow with the inner charge mode-as theoretically predicted. These results unveil a universal upstream heat current structure and open the path for more complex engineering of heat flows and cooling mechanisms in quantum nano-electronic devices.
Collapse
Affiliation(s)
- Amir Rosenblatt
- Braun Center for Submicron Research, Dept. of Condensed Matter physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Fabien Lafont
- Braun Center for Submicron Research, Dept. of Condensed Matter physics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Ivan Levkivskyi
- Institute of Ecology and Evolution, University of Bern, CH-3012, Bern, Switzerland
| | - Ron Sabo
- Braun Center for Submicron Research, Dept. of Condensed Matter physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Itamar Gurman
- Braun Center for Submicron Research, Dept. of Condensed Matter physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Daniel Banitt
- Braun Center for Submicron Research, Dept. of Condensed Matter physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Moty Heiblum
- Braun Center for Submicron Research, Dept. of Condensed Matter physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Vladimir Umansky
- Braun Center for Submicron Research, Dept. of Condensed Matter physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
13
|
Dutta B, Peltonen JT, Antonenko DS, Meschke M, Skvortsov MA, Kubala B, König J, Winkelmann CB, Courtois H, Pekola JP. Thermal Conductance of a Single-Electron Transistor. PHYSICAL REVIEW LETTERS 2017; 119:077701. [PMID: 28949696 DOI: 10.1103/physrevlett.119.077701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 06/07/2023]
Abstract
We report on combined measurements of heat and charge transport through a single-electron transistor. The device acts as a heat switch actuated by the voltage applied on the gate. The Wiedemann-Franz law for the ratio of heat and charge conductances is found to be systematically violated away from the charge degeneracy points. The observed deviation agrees well with the theoretical expectation. With a large temperature drop between the source and drain, the heat current away from degeneracy deviates from the standard quadratic dependence in the two temperatures.
Collapse
Affiliation(s)
- B Dutta
- Université Grenoble Alpes, CNRS, Institut Néel, 25 Avenue des Martyrs, 38042 Grenoble, France
| | - J T Peltonen
- Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| | - D S Antonenko
- Skolkovo Institute of Science and Technology, Skolkovo, 143026 Moscow, Russia
- L. D. Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia
- Moscow Institute of Physics and Technology, Moscow, 141700, Russia
| | - M Meschke
- Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| | - M A Skvortsov
- Skolkovo Institute of Science and Technology, Skolkovo, 143026 Moscow, Russia
- L. D. Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia
- Moscow Institute of Physics and Technology, Moscow, 141700, Russia
| | - B Kubala
- Institute for Complex Quantum Systems and IQST, University of Ulm, 89069 Ulm, Germany
| | - J König
- Theoretische Physik and CENIDE, Universität Duisburg-Essen, 47048 Duisburg, Germany
| | - C B Winkelmann
- Université Grenoble Alpes, CNRS, Institut Néel, 25 Avenue des Martyrs, 38042 Grenoble, France
| | - H Courtois
- Université Grenoble Alpes, CNRS, Institut Néel, 25 Avenue des Martyrs, 38042 Grenoble, France
| | - J P Pekola
- Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| |
Collapse
|
14
|
Proliferation of neutral modes in fractional quantum Hall states. Nat Commun 2014; 5:4067. [DOI: 10.1038/ncomms5067] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/07/2014] [Indexed: 11/09/2022] Open
|
15
|
Gurman I, Sabo R, Heiblum M, Umansky V, Mahalu D. Extracting net current from an upstream neutral mode in the fractional quantum Hall regime. Nat Commun 2012; 3:1289. [DOI: 10.1038/ncomms2305] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 11/09/2012] [Indexed: 11/09/2022] Open
|