1
|
Ghosh S, Pandey G, Tiwari AK. Efficient Control of Electron Localization and Probability Modulation with Synthesized Two-Color Intense Laser Pulses. J Phys Chem A 2024. [PMID: 39058686 DOI: 10.1021/acs.jpca.4c03416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
A coupled electron-nuclear dynamical study at attosecond time scale is performed on the HD+ and H2+ molecular ions under the influence of synthesized intense two-color electric fields. We have employed ω - 2ω and also, ω - 3ω two-color fields in the infrared/mid-infrared regime to study the different fragmentation processes originating from the interference of n - (n + i) (i = 1, 2) photon absorption pathways. The branching ratios corresponding to different photofragments are controlled by tuning the relative phase as well as intensity of the two-color pulses, while the effect of the initial nuclear wave function is also studied by taking an individual vibrational eigenstate or a coherent superposition of several eigenstates of HD+ and H2+. By comprehensive analysis, the efficacy of the two different types of synthesized two-color pulses (ω - 2ω and ω - 3ω) are analyzed with respect to one-color intense pulses in terms of controlling the probability modulation and electron localization asymmetry and compared with previous theoretical calculations and experimental findings. Through the detailed investigation, we have addressed which one is the major controlling knob to have better electron localization as well as probability modulation.
Collapse
Affiliation(s)
- Sandip Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal 741246, India
| | - Gaurav Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal 741246, India
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium
| | - Ashwani K Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal 741246, India
| |
Collapse
|
2
|
Pandey G, Ghosh S, Tiwari AK. Strong Laser Field-Driven Coupled Electron-Nuclear Dynamics: Quantum vs Classical Description. J Phys Chem A 2023; 127:9206-9219. [PMID: 37890168 DOI: 10.1021/acs.jpca.3c05047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
We have performed a coupled electron-nuclear dynamics study of H2+ molecular ions under the influence of an intense few-cycle 4.5 fs laser pulse with an intensity of 4 × 1014 W/cm2 and a central wavelength of 750 nm. Both quantum and classical dynamical methods are employed in the exact similar initial conditions with the aim of head-to-head comparison of two methodologies. A competition between ionization and dissociation channel is explained under the framework of quantum and classical dynamics. The origin of the electron localization phenomena is elucidated by observing the molecular and electronic wave packet evolution pattern. By probing with different carrier envelope phase (CEP) values of the ultrashort pulse, the possibility of electron localization on either of the two nuclei is investigated. The effects of initial vibrational states on final dissociation and ionization probabilities for several CEP values are studied in detail. Finally, asymmetries in the dissociation probabilities are calculated and mutually compared for both quantum and classical dynamical methodologies, whereas Franck-Condon averaging over the initial vibrational states is carried out in order to mimic the existing experimental conditions.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Sandip Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Ashwani K Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| |
Collapse
|
3
|
Zhou J, Wang X. Classical multielectron model atoms with optimized ionization energies. OPTICS EXPRESS 2022; 30:16802-16811. [PMID: 36221515 DOI: 10.1364/oe.457634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
We propose a method to build stable classical multielectron model atoms with the ionization energies optimized to experimental values. Based on the work of Kirschbaum and Wilets [Phys. Rev. A21, 834 (1980)10.1103/PhysRevA.21.834], which introduces auxiliary potentials to simulate quantum mechanical effects, we implement a genetic algorithm to optimize the related parameters such that the model atoms yield correct (first few) ionization energies. Ionization-energy optimized model atoms automatically show separated electron shells, consistent to normal expectations. Numerical examples are given to demonstrate the importance of correct ionization energies, as well as new perspectives to double ionization processes.
Collapse
|
4
|
Pandey G, Ghosh S, Tiwari AK. Dissociative ionization of the H 2 molecule under a strong elliptically polarized laser field: carrier-envelope phase and orientation effect. Phys Chem Chem Phys 2022; 24:24582-24592. [DOI: 10.1039/d2cp02292c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A coupled electron–nuclear dynamical study is performed to investigate the sub-cycle dissociation and ionization of the H2 molecule in a strong 750 nm 4.5 fs elliptically polarized laser pulse.
Collapse
Affiliation(s)
- Gaurav Pandey
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Sandip Ghosh
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Ashwani K. Tiwari
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
5
|
Tan J, Zhou Y, Xu S, Ke Q, Liang J, Ma X, Cao W, Li M, Zhang Q, Lu P. Analyzing the electron trajectories in strong-field tunneling ionization with the phase-of-the-phase spectroscopy. OPTICS EXPRESS 2021; 29:37927-37944. [PMID: 34808856 DOI: 10.1364/oe.442903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
By numerically solving the time-dependent Schrödinger equation, we theoretically study strong-field tunneling ionization of Ar atom in the parallel two-color field which consists of a strong fundamental pulse and a much weaker second harmonic component. Based on the quantum orbits concept, we analyzed the photoelectron momentum distributions with the phase-of-the-phase spectroscopy, and the relative contributions of the two parts of the photoelectrons produced during the rising and falling edges of the adjacent quarters of the laser cycle are identified successfully. Our results show that the relative contributions of these two parts depend on both of the transverse and longitude momenta. By comparing the results from model atoms with Coulomb potential and short-range potential, the role of the long-range Coulomb interaction on the relative contributions of these two parts of electrons is revealed. Additionally, we show that the effects of Coulomb interaction on ionization time are vital for identifying their relative contributions.
Collapse
|
6
|
Higher-order harmonics generation based on near-field scattered laser pulse in Au-Si core-shell nanospheres. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Wu D, Li Q, Wang J, Guo F, Chen J, Yang Y. Double ionization of hydrogen molecules in a high-intensity linearly polarized laser pulse. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Pandey G, Dey D, Tiwari AK. Controlling the Ultrafast Dynamics of HD + by the Carrier-Envelope Phases of an Ultrashort Laser Pulse: A Quasi-Classical Dynamics Study. J Phys Chem A 2020; 124:9710-9720. [PMID: 33191740 DOI: 10.1021/acs.jpca.0c08979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A theoretical study on the coupled electron-nuclear dynamics of HD+ molecular ions under ultrashort, intense laser pulses is performed by employing a well-established quasi-classical model. The influence of the laser carrier-envelope phase on various channel (H + D+, D + H+, and H+ + D+) probabilities is investigated at different laser field intensities. The carrier-envelope phase is found to govern the dissociation (H + D+ and D + H+) and Coulomb explosion (H+ + D+) channel probabilities. The kinetic energy release distributions of the fragments are also found to be sensitive to the carrier-envelope phase of the laser pulse. Our results are in agreement with the previously reported quantum dynamics studies and experiments.
Collapse
Affiliation(s)
- Gaurav Pandey
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Diptesh Dey
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Ashwani K Tiwari
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
9
|
Chen X, Ruiz C, He F, Zhang J. Mapping initial transverse momenta of tunnel-ionized electrons to rescattering double ionization in nondipole regimes. OPTICS EXPRESS 2020; 28:14884-14896. [PMID: 32403522 DOI: 10.1364/oe.391138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
We investigate the double ionization of a model Neon atom in strong middle infrared laser pulses by simulating the classical trajectories of the electron ensemble. After one electron tunnels out from the laser-dressed Coulomb barrier, it might undergo different returning trajectories depending on its initial transverse momentum, which in this wavelength may propagate along or deviate from the polarization direction. This initial transverse momentum determines the rescattering time, and thus some trajectories can have returning time longer than one optical cycle. These late-returning trajectories determine the correlated electron-electron momentum distribution for double ionization and allow us to disentangle each double ionization event from the final momentum distribution. The description of these trajectories allow us also to understand how the nondipole effects modify the correlated electron-electron momentum distribution in double ionization.
Collapse
|
10
|
Liang J, Zhou Y, Tan J, He M, Ke Q, Zhao Y, Li M, Jiang W, Lu P. Low-energy photoelectron interference structure in attosecond streaking. OPTICS EXPRESS 2019; 27:37736-37752. [PMID: 31878550 DOI: 10.1364/oe.27.037736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
By numerically solving the time-dependent Schrödinger equation, we theoretically investigate the dynamics of the low-energy photoelectrons ionized by a single attosecond pulse in the presence of an infrared laser field. The obtained photoelectron momentum distributions exhibit complicated interference structures. With the semiclassical model, the originations for the different types of the interference structures are unambiguously identified. Moreover, by changing the time delay between the attosecond pulse and the infrared laser field, these interferences could be selectively enhanced or suppressed. This enables us to extract information about the ionization dynamics encoded in the interference structures. As an example, we show that the phase of the electron wave-packets ionized by the linearly and circularly polarized attosecond pulses can be extracted from the interference structures of the direct and the near-forward rescattering electrons.
Collapse
|
11
|
Ke Q, Zhou Y, Tan J, He M, Liang J, Zhao Y, Li M, Lu P. Two-dimensional photoelectron holography in strong-field tunneling ionization by counter rotating two-color circularly polarized laser pulses. OPTICS EXPRESS 2019; 27:32193-32209. [PMID: 31684436 DOI: 10.1364/oe.27.032193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Strong-field photoelectron holography (SFPH), originating from the interference of the direct electron and the rescattering electron in tunneling ionization, is a significant tool for probing structure and electronic dynamics in molecules. We theoretically study SFPH by counter rotating two-color circularly (CRTC) polarized laser pulses. Different from the case of the linearly polarized laser field, where the holographic structure in the photoelectron momentum distribution (PEMD) is clustered around the laser polarization direction, in the CRTC laser fields, the tunneling ionized electrons could recollide with the parent ion from different angles and thus the photoelectron hologram appears in the whole plane of laser polarization. This property enables structural information delivered by the electrons scattering the molecule from different angles to be recorded in the two-dimensional photoelectron hologram. Moreover, the electrons tunneling at different laser cycles are streaked to different angles in the two-dimensional polarization plane. This property enables us to probe the sub-cycle electronic dynamics in molecules over a long time window with the multiple-cycle CRTC laser pulses.
Collapse
|
12
|
Dey D, Ray D, Tiwari AK. Controlling Electron Dynamics with Carrier-Envelope Phases of a Laser Pulse. J Phys Chem A 2019; 123:4702-4707. [PMID: 31074991 DOI: 10.1021/acs.jpca.9b02870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A theoretical study on the ionization dynamics of carbon atom irradiated with a few-cycle, intense laser field is performed within a quasiclassical model to get mechanistic insights into an earlier reported carrier-envelope phase dependency of ionization probabilities of an atom [ Phys. Rev. Lett. 2013, 110, 083602]. The carrier-envelope phase of the laser pulse is found to govern the overall dynamics, reflecting its importance in controlling electronic motion. To understand the origin of this effect, individual trajectories were analyzed at a particular laser intensity. We found that a variation in the carrier-envelope phase affects the angle of ejection of the electrons and subsequently the attainment of the desired final state.
Collapse
Affiliation(s)
- Diptesh Dey
- Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , India
| | - Dhiman Ray
- Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , India
| | - Ashwani K Tiwari
- Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , India
| |
Collapse
|
13
|
Tong A, Li Q, Ma X, Zhou Y, Lu P. Internal collision induced strong-field nonsequential double ionization in molecules. OPTICS EXPRESS 2019; 27:6415-6425. [PMID: 30876227 DOI: 10.1364/oe.27.006415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Using the classical ensemble method, we have investigated the alignment dependence of the correlated electron dynamics in strong-field nonsequential double ionization (NSDI) of diatomic molecules driven by linearly polarized laser pulses. Our numerical results show that the correlated electron pairs are more likely to emit into the same hemisphere (side-by-side emission) for the parallel aligned molecules at the small internuclear distance, in agreement with previous experimental results. Surprisingly, as the internuclear distance increases, this side-by-side emission is more prevalent for the perpendicularly aligned molecules. Back analyzing of the classical trajectories shows that a considerable part of the NSDI events for the parallel aligned molecules at the large internuclear distances occur through an internal collision, not the well-known recollision. In the internal collision induced NSDI, the first electron tunnels through the inner barrier from the up-field core, moves directly towards the other core, and kicks out the second electron. For this type of NSDI events, the electron pairs are more likely to emit into the opposite hemispheres and thus the correlated electron momentum spectrum exhibits a more dominant back-to-back behavior in the parallel aligned molecules.
Collapse
|
14
|
Yuan ZQ, Ye DF, Gu YQ, Liu J, Fu LB. Retrieving the excitation and polarization configurations in Coulomb explosion of a trimer driven by strong laser field. OPTICS EXPRESS 2019; 27:3180-3189. [PMID: 30732343 DOI: 10.1364/oe.27.003180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
Ultrafast imaging and manipulating transient molecular structures in chemical reactions and photobiological processes is a fundamental but challenging goal for scientists. Theoretically, the challenge originates from the complex multiple-time-scale correlated electron dynamics and their coupling with the nuclei. Here, we employ classical polyatomic models for this kind of study and take the Coulomb explosion of argon and neon trimers in strong laser fields as an illuminating example. Our results demonstrate that the degree of asymmetry on the kinetic energy release (KER) spectrum, together with a Dalitz plot, constitutes a powerful tool for retrieving the ionization, excitation, and polarization configurations (femtosecond-to-attosecond time-scale electron dynamics) of trimers under strong-field radiation.
Collapse
|
15
|
Ma X, Zhou Y, Chen Y, Li M, Li Y, Zhang Q, Lu P. Timing the release of the correlated electrons in strong-field nonsequential double ionization by circularly polarized two-color laser fields. OPTICS EXPRESS 2019; 27:1825-1837. [PMID: 30732230 DOI: 10.1364/oe.27.001825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
With the semiclassical ensemble model, we systematically investigate the correlated electron dynamics in strong-field nonsequential double ionization (NSDI) by the counter-rotating circularly polarized two-color (CPTC) laser pulses. Our results show that the angular distributions of the electrons in NSDI sensitively depend on the intensity ratio of the CPTC laser fields. At the small ratio, the electron pairs emit with a relative angle of about 120°, and this angle shifts to 40° as the ratio increases and finally it exhibits a wide range distribution as the intensity ratio further increases. Back analysis of the NSDI trajectories shows that this behavior results from the relative-intensity-dependence of the release time of the electron pairs in the CPTC laser fields. The release times of the electron pairs are directly mapped to the angular distribution. Our results indicate that the emission times of the correlated electrons in NSDI can be controlled with the CPTC laser fields.
Collapse
|
16
|
Tan J, Zhou Y, Li M, He M, Liu Y, Lu P. Accurate measurement of laser intensity using photoelectron interference in strong-field tunneling ionization. OPTICS EXPRESS 2018; 26:20063-20075. [PMID: 30119322 DOI: 10.1364/oe.26.020063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Accurate determination of laser intensity is of fundamental importance to study various phenomena in intense laser-atom/molecule interactions. We theoretically demonstrate a scheme to measure laser intensity by examining the holographic structure originating from the interference between the direct and near-forward rescattering electrons in strong-field tunneling ionization. By adding a weak second-harmonic field with polarization orthogonal to the strong fundamental driving field, the interference pattern oscillates with the changing relative phases of the two-color fields. Interestingly, the amplitude of this oscillation in the photoelectron momentum spectrum depends on the parallel momentum. With the quantum-orbit analysis, we show that the amplitude of the oscillation minimizes when the time difference between the recollision and ionization of near-forward rescattering electron is half cycle of the fundamental driving field. This enables us to measure accurately the laser intensity by seeking the minimum of the oscillation amplitude. Moreover, we show that this minimum can be determined without scanning the relative phases, instead, by just monitoring the interference patterns for two relative phases. This facilitates the application of our scheme in experiment.
Collapse
|
17
|
Kobayashi Y, Reduzzi M, Chang KF, Timmers H, Neumark DM, Leone SR. Selectivity of Electronic Coherence and Attosecond Ionization Delays in Strong-Field Double Ionization. PHYSICAL REVIEW LETTERS 2018; 120:233201. [PMID: 29932679 DOI: 10.1103/physrevlett.120.233201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 05/16/2023]
Abstract
Experiments are presented on real-time probing of coherent electron dynamics in xenon initiated by strong-field double ionization. Attosecond transient absorption measurements allow for characterization of electronic coherences as well as relative ionization timings in multiple electronic states of Xe^{+} and Xe^{2+}. A high degree of coherence g=0.4 is observed between ^{3}P_{2}^{0}-^{3}P_{0}^{0} of Xe^{2+}, whereas for other possible pairs of states the coherences are below the detection limits of the experiments. A comparison of the experimental results with numerical simulations based on an uncorrelated electron-emission model shows that the coherences produced by strong-field double ionization are more selective than predicted. Surprisingly short ionization time delays, 0.85 fs, 0.64 fs, and 0.75 fs relative to Xe^{+} formation, are also measured for the ^{3}P_{2}, ^{3}P_{0}, and ^{3}P_{1} states of Xe^{2+}, respectively. Both the unpredicted selectivity in the formation of coherence and the subfemtosecond time delays of specific states provide new insight into correlated electron dynamics in strong-field double ionization.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Maurizio Reduzzi
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Kristina F Chang
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Henry Timmers
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of California, Berkeley, California 94720, USA
| |
Collapse
|
18
|
Li N, Zhou Y, Ma X, Li M, Huang C, Lu P. Correlated electron dynamics in strong-field nonsequential double ionization of Mg. J Chem Phys 2017; 147:174302. [PMID: 29117686 DOI: 10.1063/1.5001668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using the classical ensemble model, we systematically investigate strong-field nonsequential double ionization (NSDI) of Mg by intense elliptically polarized laser pulses with different wavelengths. Different from the noble atoms, NSDI occurs for Mg driven by elliptically and circularly polarized laser fields. Our results show that in elliptically and circularly polarized laser fields, the NSDI yield is sharply suppressed as the wavelength increases. Interestingly, the correlated behavior in the electron momentum spectra depends sensitively on the wavelengths. The corresponding electron dynamics is revealed by back tracing the classical trajectory.
Collapse
Affiliation(s)
- Ning Li
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yueming Zhou
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaomeng Ma
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Li
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cheng Huang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Peixiang Lu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
19
|
Winney AH, Lee SK, Lin YF, Liao Q, Adhikari P, Basnayake G, Schlegel HB, Li W. Attosecond Electron Correlation Dynamics in Double Ionization of Benzene Probed with Two-Electron Angular Streaking. PHYSICAL REVIEW LETTERS 2017; 119:123201. [PMID: 29341647 DOI: 10.1103/physrevlett.119.123201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 06/07/2023]
Abstract
With a novel three-dimensional electron-electron coincidence imaging technique and two-electron angular streaking method, we show that the emission time delay between two electrons can be measured from tens of attoseconds to more than 1 fs. Surprisingly, in benzene, the double ionization rate decays as the time delay between the first and second electron emission increases during the first 500 as. This is further supported by the decay of the Coulomb repulsion in the direction perpendicular to the laser polarization. This result reveals that laser-induced electron correlation plays a major role in strong field double ionization of benzene driven by a nearly circularly polarized field.
Collapse
Affiliation(s)
- Alexander H Winney
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Suk Kyoung Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Yun Fei Lin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Qing Liao
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Pradip Adhikari
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Gihan Basnayake
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Wen Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| |
Collapse
|
20
|
Zhou Y, Li M, Li Y, Tong A, Li Q, Lu P. Dissection of electron correlation in strong-field sequential double ionization using a classical model. OPTICS EXPRESS 2017; 25:8450-8458. [PMID: 28380956 DOI: 10.1364/oe.25.008450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent experiments on strong-field sequential double ionization (SDI) have reported several observations which are regarded as evidence of electron correlation, querying the validity of the standard independent electron approximation for SDI. Here we theoretically study SDI with a classical ensemble model. The experimental results are well reproduced with this model. Back tracing of the ionization process shows that these results are ascribed to the subcycle ionization dynamics of the two electrons, not the evidences of the electron correlation in SDI. Thus, the previously reported observations are not enough to claim the breakdown of the independent electron approximation in SDI.
Collapse
|
21
|
Nonsequential double ionization with mid-infrared laser fields. Sci Rep 2016; 6:37413. [PMID: 27857182 PMCID: PMC5114651 DOI: 10.1038/srep37413] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/27/2016] [Indexed: 11/29/2022] Open
Abstract
Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the final energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.
Collapse
|
22
|
Li Y, Zhou Y, He M, Li M, Lu P. Identifying backward-rescattering photoelectron hologram with orthogonal two-color laser fields. OPTICS EXPRESS 2016; 24:23697-23706. [PMID: 27828206 DOI: 10.1364/oe.24.023697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Backscattering photoelectron hologram (BPH) originating from direct and backward-rescattering electrons encodes important structural information and ultrafast dynamics of the underlying processes. However, the BPH is usually overshadowed by other interference structures in the photoelectrons momentum spectra, preventing a direct extraction of information using BPH. Here we theoretically demonstrate disentanglement of the BPH from other types of interference with the orthogonal two-color field, where a weak orthogonal component is used to streak the BPH. By carefully adjusting the relative phase of the two-color field, the BPH is effectively separated from other interferences in the photoelectron momentum spectra and thus the BPH is unambiguously identified. This takes a significant step to time-resolved imaging of the attosecond dynamics with strong-field photoelectron holography.
Collapse
|
23
|
Dharuman G, Verboncoeur J, Christlieb A, Murillo MS. Atomic bound state and scattering properties of effective momentum-dependent potentials. Phys Rev E 2016; 94:043205. [PMID: 27841554 DOI: 10.1103/physreve.94.043205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Effective classical dynamics provide a potentially powerful avenue for modeling large-scale dynamical quantum systems. We have examined the accuracy of a Hamiltonian-based approach that employs effective momentum-dependent potentials (MDPs) within a molecular-dynamics framework through studies of atomic ground states, excited states, ionization energies, and scattering properties of continuum states. Working exclusively with the Kirschbaum-Wilets (KW) formulation with empirical MDPs [C. L. Kirschbaum and L. Wilets, Phys. Rev. A 21, 834 (1980)0556-279110.1103/PhysRevA.21.834], optimization leads to very accurate ground-state energies for several elements (e.g., N, F, Ne, Al, S, Ar, and Ca) relative to Hartree-Fock values. The KW MDP parameters obtained are found to be correlated, thereby revealing some degree of transferability in the empirically determined parameters. We have studied excited-state orbits of electron-ion pair to analyze the consequences of the MDP on the classical Coulomb catastrophe. From the optimized ground-state energies, we find that the experimental first- and second-ionization energies are fairly well predicted. Finally, electron-ion scattering was examined by comparing the predicted momentum transfer cross section to a semiclassical phase-shift calculation; optimizing the MDP parameters for the scattering process yielded rather poor results, suggesting a limitation of the use of the KW MDPs for plasmas.
Collapse
Affiliation(s)
- Gautham Dharuman
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - John Verboncoeur
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Andrew Christlieb
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael S Murillo
- New Mexico Consortium, Los Alamos, New Mexico 87544, USA
- Computational Physics and Methods Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| |
Collapse
|
24
|
Huang C, Zhong M, Wu Z. Origin of double-line structure in nonsequential double ionization by few-cycle laser pulses. J Chem Phys 2016; 145:044302. [PMID: 27475356 DOI: 10.1063/1.4959188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigate nonsequential double ionization (NSDI) of molecules by few-cycle laser pulses at the laser intensity of 1.2-1.5 × 10(14) W/cm(2) using the classical ensemble model. The same double-line structure as the lower intensity (1.0 × 10(14) W/cm(2)) is also observed in the correlated electron momentum spectra for 1.2-1.4 × 10(14) W/cm(2). However, in contrast to the lower intensity where NSDI proceeds only through the recollision-induced double excitation with subsequent ionization (RDESI) mechanism, here, the recollision-induced excitation with subsequent ionization (RESI) mechanism has a more significant contribution to NSDI. This indicates that RDESI is not necessary for the formation of the double-line structure and RESI can give rise to the same type of structure independently. Furthermore, we explore the ultrafast dynamics underlying the formation of the double-line structure in RESI.
Collapse
Affiliation(s)
- Cheng Huang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Mingmin Zhong
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhengmao Wu
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
25
|
Li Y, Yu B, Tang Q, Wang X, Hua D, Tong A, Jiang C, Ge G, Li Y, Wan J. Transition of recollision trajectories from linear to elliptical polarization. OPTICS EXPRESS 2016; 24:6469-6479. [PMID: 27136838 DOI: 10.1364/oe.24.006469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using a classical ensemble method, we revisit the topic of recollision and nonsequential double ionization with elliptically polarized laser fields. We focus on how the recollision mechanism transitions from short trajectories with linear polarization to long trajectories with elliptical polarization. We propose how this transition can be observed by meansuring the carrier-envelop-phase dependence of the correlated electron momentum spectra using currently available few-cycle laser pulses.
Collapse
|
26
|
Zhu X, Lan P, Liu K, Li Y, Liu X, Zhang Q, Barth I, Lu P. Helicity sensitive enhancement of strong-field ionization in circularly polarized laser fields. OPTICS EXPRESS 2016; 24:4196-4209. [PMID: 26907068 DOI: 10.1364/oe.24.004196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We investigate the strong-field ionization from p± orbitals driven by circularly polarized laser fields by solving the two-dimensional time-dependent Schrödinger equation in polar coordinates with the Lagrange mesh technique. Enhancement of ionization is found in the deep multiphoton ionization regime when the helicity of the laser field is opposite to that of the p electron, while this enhancement is suppressed when the helicities are the same. It is found that the enhancement of ionization is attributed to the multiphoton resonant excitation. The helicity sensitivity of the resonant enhancement is related to the different excitation-ionization channels in left and right circularly polarized laser fields.
Collapse
|
27
|
Chen Y, Zhou Y, Li Y, Li M, Lan P, Lu P. The contribution of the delayed ionization in strong-field nonsequential double ionization. J Chem Phys 2016; 144:024304. [DOI: 10.1063/1.4939642] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yinbo Chen
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Yueming Zhou
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Yang Li
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Min Li
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Pengfei Lan
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Peixiang Lu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Laboratory of Optical Information Technology, Wuhan Institute of Technology, Wuhan 430205, People’s Republic of China
| |
Collapse
|
28
|
Li Y, Lan P, Xie H, He M, Zhu X, Zhang Q, Lu P. Nonadiabatic tunnel ionization in strong circularly polarized laser fields: counterintuitive angular shifts in the photoelectron momentum distribution. OPTICS EXPRESS 2015; 23:28801-28807. [PMID: 26561149 DOI: 10.1364/oe.23.028801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We perform time-dependent calculation of strong-field ionization of neon, initially prepared in 2p(-1) and 2p(+1) states, with intense near-circularly polarized laser pulses. By solving the three-dimensional time-dependent Schrödinger equation, we find clear different offset angles of the maximum in the photoelectron momentum distribution in the polarization plane of the laser pulses for the two states. We provide clear interpretation that this different angular offset is linked to the sign of the magnetic quantum number, thus it can be used to map out the orbital angular momentum of the initial state. Our results provide a potential tool for studying orbital symmetry in atomic and molecular systems.
Collapse
|
29
|
Tong A, Zhou Y, Lu P. Resolving subcycle electron emission in strong-field sequential double ionization. OPTICS EXPRESS 2015; 23:15774-15783. [PMID: 26193556 DOI: 10.1364/oe.23.015774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using a fully classical model, we have studied sequential double ionization (SDI) of argon driven by elliptically polarized laser pulses at intensities well in the over-barrier ionization region. The results show that ion momentum distributions evolve from the two-band structure to the four-band, six-band structure and finally to the previously obtained four-band structure as the pulse duration increases. Our analysis shows that the evolution of these band structures originates from the pulse-duration-dependent multiple ionization bursts of the second electron. These band structures unambiguously indicate the subcycle electron emission in SDI.
Collapse
|
30
|
Li Y, Qin M, Zhu X, Zhang Q, Lan P, Lu P. Ultrafast molecular orbital imaging based on attosecond photoelectron diffraction. OPTICS EXPRESS 2015; 23:10687-10702. [PMID: 25969107 DOI: 10.1364/oe.23.010687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present ab initio numerical study of ultrafast ionization dynamics of H(2)(+) as well as CO(2) and N(2) exposed to linearly polarized attosecond extreme ultraviolet pulses. When the molecules are aligned perpendicular to laser polarization direction, photonionization of these molecules show clear and distinguishing diffraction patterns in molecular attosecond photoelectron momentum distributions. The internuclear distances of the molecules are related to the position of the associated diffraction patterns, which can be determined with high accuracy. Moreover, the relative heights of the diffraction fringes contain fruitful information of the molecular orbital structures. We show that the diffraction spectra can be well produced using the two-center interference model. By adopting a simple inversion algorithm which takes into account the symmetry of the initial molecular orbital, we can retrieve the molecular orbital from which the electron is ionized. Our results offer possibility for imaging of molecular structure and orbitals by performing molecular attosecond photoelectron diffraction.
Collapse
|
31
|
Zhang Z, Zhang J, Bai L, Wang X. Transition of correlated-electron emission in nonsequential double ionization of Ar atoms. OPTICS EXPRESS 2015; 23:7044-7052. [PMID: 25837049 DOI: 10.1364/oe.23.007044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Emission of the two electrons released from nonsequential double ionization of argon atoms is anticorrelated at lower laser intensities but is correlated at higher laser intensities. Such a transition is caused by the momentum change of recollision-induced-ionization (RII) electrons. At lower laser intensities, the Coulomb repulsion between the two RII electrons dominates the motion of electrons and pushes them leaving the laser field back-to-back. At higher laser intensities, the drift momentum obtained from the laser field dominates the motion of electrons and drives them leaving the laser field side-by-side.
Collapse
|
32
|
Wang Z, Feng Z, Long H. Ionisation effect on the electron localisation in the subcycle waveform shaping scheme. Mol Phys 2015. [DOI: 10.1080/00268976.2014.956828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Chen L, Huang C, Zhu X, Lan P, Lu P. Molecular photoelectron holography by an attosecond XUV pulse in a strong infrared laser field. OPTICS EXPRESS 2014; 22:20421-20431. [PMID: 25321249 DOI: 10.1364/oe.22.020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have investigated the photoelectron spectra from ionization of diatomic molecules by an attosecond XUV pulse in a strong infrared laser field by quantum calculations. A clear holographic interference structure is observed in the two-dimensional photoelectron momentum spectrum. Moreover, this holographic structure depends sensitively on the electron orbitals and internuclear distance of diatomic molecules. Based on the orbital dependence of the holographic structure, one can identify the symmetries and electron density distributions of molecular orbitals. This indicates that the photoelectron holography by an attosecond XUV pulse in a strong infrared field can be used as an efficient tool for molecular imaging.
Collapse
|
34
|
Jörder F, Zimmermann K, Rodriguez A, Buchleitner A. Interaction effects on dynamical localization in driven helium. PHYSICAL REVIEW LETTERS 2014; 113:063004. [PMID: 25148324 DOI: 10.1103/physrevlett.113.063004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Indexed: 06/03/2023]
Abstract
Dynamical localization prevents driven atomic systems from fast fragmentation by hampering the excitation process. We present numerical simulations within a collinear model of microwave-driven helium Rydberg atoms and prove that dynamical localization survives the impact of electron-electron interaction, even for doubly excited states in the presence of fast autoionization. We conclude that the effect of electron-electron repulsion on localization can be described by an appropriate rescaling of the atomic level density and of the external field with the strength of the interaction.
Collapse
Affiliation(s)
- Felix Jörder
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Klaus Zimmermann
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Alberto Rodriguez
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Andreas Buchleitner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| |
Collapse
|
35
|
Gong X, Song Q, Ji Q, Pan H, Ding J, Wu J, Zeng H. Strong-field dissociative double ionization of acetylene. PHYSICAL REVIEW LETTERS 2014; 112:243001. [PMID: 24996086 DOI: 10.1103/physrevlett.112.243001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Indexed: 05/21/2023]
Abstract
We investigate dissociative double ionization of acetylene, one of the smallest organic molecules yet with a rich electronic structure, in strong laser fields by measuring two fragment ions and two electrons in coincidence. The two-body fragmentation channels are dominated by the removal of electrons from the lower-lying molecular orbitals rather than from the highest occupied one. The electron localization-assisted enhanced ionization mechanism plays a central role for the strong-field deprotonation ionization of acetylene by releasing the second electron from the up-field potential well of the hydrogen site at the internuclear distance near twice the equilibrium value of the C-H bond.
Collapse
Affiliation(s)
- Xiaochun Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Qiying Song
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Qinying Ji
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jingxin Ding
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Heping Zeng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| |
Collapse
|
36
|
Zhang Q, He L, Lan P, Lu P. Shaped multi-cycle two-color laser field for generating an intense isolated XUV pulse toward 100 attoseconds. OPTICS EXPRESS 2014; 22:13213-13233. [PMID: 24921516 DOI: 10.1364/oe.22.013213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The isolated attosecond pulse (IAP) generated from high-order harmonic (HH) radiation has been established as an important technique for the ultrafast optics over past decade. The applications of IAP in ultrafast processes can be greatly extended by further developing the high-intensity IAP. Here, we theoretically propose to shape a two-color field by performing peak amplitude-wavelength analysis. It is found that a 240-as IAP can be generated even without carrier envelop phase (CEP) stabilization using a 25 fs/800 nm fundamental field and a relative weak 25 fs/1330 nm control field, which enables us to markedly relax the requirements of the driving laser fields both in pulse duration and CEP control. On the other hand, if the CEPs of driving laser fields are stabilized, a 65-eV broadband continual harmonic, supporting a 81-as IAP, can be directly produced with the optimized intensity ratio of 0.866 and control wavelength of 1400 nm. Moreover, the propagation effect of two-color field on the macroscopic build-up of HH for generating a high-energy IAP is discussed. We found that the method of phase match still works for the efficient continuous harmonic generation as long as the ionization level and the pressure of gas medium are kept low enough. Since the phase-matched short IAP can be generated with our shaped two-color scheme in combination with a relaxed requirement of driving laser fields, the commercial available high-energy laser source with a loosely focused geometry is promising for scaling up the energy of IAP, showing the potential for the realization of IAP with high focused intensity toward 100 attoseconds.
Collapse
|
37
|
Liu Y, Fu L, Ye D, Liu J, Li M, Wu C, Gong Q, Moshammer R, Ullrich J. Strong-field double ionization through sequential release from double excitation with subsequent Coulomb scattering. PHYSICAL REVIEW LETTERS 2014; 112:013003. [PMID: 24483894 DOI: 10.1103/physrevlett.112.013003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Indexed: 06/03/2023]
Abstract
We perform a triple coincidence study on differential momentum distributions of strong-field double ionization of Ar atoms in linearly polarized fields (795 nm, 45 fs, 7×10(13) W/cm2). Using a three-dimensional two-electron atomic-ensemble semiclassical model including the tunneling effect for both electrons, we retrieve differential momentum distributions and achieve a good agreement with the measurement. Ionization dynamics of the correlated electrons for the side-by-side and back-to-back emission is analyzed separately. According to the semiclassical model, we find that the doubly excited states are largely populated after the laser-assisted recollision and large amounts of double ionization dominantly takes place through sequential ionization of doubly excited states at such a low laser intensity. Compared with the Coulomb-free and Coulomb-corrected sequential tunneling models, we verify that electrons can obtain an energy as large as ∼6.5U p through Coulomb scattering in the combined laser and doubly charged ionic fields.
Collapse
Affiliation(s)
- Yunquan Liu
- Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, 100871 Beijing, China and Collaborative Innovation Center of Quantum Matter, Beijing 100871, China and Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - Libin Fu
- Center for Applied Physics and Technology, Peking University, 100084 Beijing, China and Institute of Applied Physics and Computational Mathematics, 100088 Beijing, China
| | - Difa Ye
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany and Institute of Applied Physics and Computational Mathematics, 100088 Beijing, China
| | - Jie Liu
- Center for Applied Physics and Technology, Peking University, 100084 Beijing, China and Institute of Applied Physics and Computational Mathematics, 100088 Beijing, China
| | - Min Li
- Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, 100871 Beijing, China and Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Chengyin Wu
- Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, 100871 Beijing, China and Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Qihuang Gong
- Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, 100871 Beijing, China and Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - R Moshammer
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - J Ullrich
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany and Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
| |
Collapse
|
38
|
Tang Q, Huang C, Zhou Y, Lu P. Correlated multielectron dynamics in mid-infrared laser pulse interactions with neon atoms. OPTICS EXPRESS 2013; 21:21433-21443. [PMID: 24104018 DOI: 10.1364/oe.21.021433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The multielectron dynamics in nonsequential triple ionization (NSTI) of neon atoms driven by mid-infrared (MIR) laser pulses is investigated with the three-dimensional classical ensemble model. In consistent with the experimental result, our numerical result shows that in the MIR regime, the triply charged ion longitudinal momentum spectrum exhibits a pronounced double-hump structure at low laser intensity. Back analysis reveals that as the intensity increases, the responsible triple ionization channels transform from direct (e, 3e) channel to the various mixed channels. This transformation of the NSTI channels leads to the results that the shape of ion momentum spectra becomes narrow and the distinct maxima shift towards low momenta with the increase of the laser intensity. By tracing the triply ionized trajectories, the various ionization channels at different laser intensities are clearly identified and these results provide an insight into the complex dynamics of the correlated three electrons in NSTI.
Collapse
|
39
|
Tong A, Zhou Y, Huang C, Lu P. Electron dynamics of molecular double ionization by circularly polarized laser pulses. J Chem Phys 2013; 139:074308. [DOI: 10.1063/1.4818592] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Huang C, Zhou Y, Zhang Q, Lu P. Contribution of recollision ionization to the cross-shaped structure in nonsequential double ionization. OPTICS EXPRESS 2013; 21:11382-11390. [PMID: 23669995 DOI: 10.1364/oe.21.011382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
With the three-dimensional classical ensemble model, we investigate the correlated electron emission in nonsequential double ionization (NSDI) of argon atoms by few-cycle laser pulses. Our calculations well reproduce the experimentally observed cross-shaped structure in the correlated two-electron momentum spectrum [ Nature Commun. 3, 813 (2012)]. By tracing these NSDI trajectories, we find that besides the process of recollision-induced excitation with subsequent ionization just before the next field maximum, the recollision ionization also significantly contributes to the cross-shaped structure.
Collapse
Affiliation(s)
- Cheng Huang
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | |
Collapse
|
41
|
Zhu X, Qin M, Zhang Q, Li Y, Xu Z, Lu P. Influence of large permanent dipoles on molecular orbital tomography. OPTICS EXPRESS 2013; 21:5255-5268. [PMID: 23482097 DOI: 10.1364/oe.21.005255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The influence of large permanent dipoles on molecular orbital tomography via high-order harmonic generation (HHG) is investigated in this work. It is found that, owing to the modification of the angle-dependent ionization rate resulting from the Stark shift, the one-side-recollision condition for the tomographic imaging can not be satisfied even with the few-cycle driving pulses. To overcome this problem, we employ a tailored driving pulse by adding a weak low-frequency pulse to the few-cycle laser pulse to control the HHG process and the recollision of the continuum electrons are effectively restricted to only one side of the core. Then we carried out the orbital reconstruction in both the length and velocity forms. The results show that, the orbital structure can only be successfully reproduced by using the dipole matrix elements projected perpendicular to the permanent dipole in both forms.
Collapse
Affiliation(s)
- Xiaosong Zhu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
42
|
Liu K, Zhang Q, Lan P, Lu P. Anomalous isotopic effect on electron-directed reactivity by a 3-μm midinfrared pulse. OPTICS EXPRESS 2013; 21:5107-5116. [PMID: 23482045 DOI: 10.1364/oe.21.005107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We have theoretically studied the effect of nuclear mass on electron localization in dissociating H₂⁺ and its isotopes subjected to a few-cycle 3-μm pulse. Our results reveal an anomalous isotopic effect in which the degree of electron-directed reactivity can be even higher for heavier isotopes in the intense midinfrared field. We show, for the first time, the pronounced electron localization can be established through the interferences among the multi-photon coupling channels. Due to the relative enhancement of higher-order coupling channels with growing mass, the interference maxima at different kinetic energy of the spectra gradually become in phase, ultimately resulting in the larger dissociation asymmetries of heavier isotopes.
Collapse
Affiliation(s)
- Kunlong Liu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | |
Collapse
|
43
|
Li Y, Zhu X, Zhang Q, Qin M, Lu P. Quantum-orbit analysis for yield and ellipticity of high order harmonic generation with elliptically polarized laser field. OPTICS EXPRESS 2013; 21:4896-4907. [PMID: 23482023 DOI: 10.1364/oe.21.004896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We perform a quantum-orbit analysis for the dependence of high-order-harmonic yield on the driving field ellipticity and the polarization properties of the generated high harmonics. The electron trajectories responsible for the emission of particular harmonics are identified. It is found that, in elliptically polarized driving field, the electrons have ellipticity-dependent initial velocities, which lead to the decrease of the ionization rate. Thus the harmonic yield steeply decreases with laser ellipticity. Besides, we show that the polarization properties of the harmonics are related to the complex momenta of the electron. The physical origin of the harmonic ellipticity is interpreted as the consequence of quantum-mechanical uncertainty of the electron momentum. Our results are verified with the experimental results as well as the numerical solutions of the time dependent Schrödinger equation from the literature.
Collapse
Affiliation(s)
- Yang Li
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
44
|
Yu BH, Li YB, Tang QB. Electron correlations in nonsequential double ionization of argon atoms by elliptically polarized laser pulses. CHINESE PHYSICS B 2013; 22:013206. [DOI: 10.1088/1674-1056/22/1/013206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
45
|
Qin M, Zhu X, Zhang Q, Lu P. Tomographic imaging of asymmetric molecular orbitals with a two-color multicycle laser field. OPTICS LETTERS 2012; 37:5208-5210. [PMID: 23258054 DOI: 10.1364/ol.37.005208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We theoretically demonstrate a scheme for tomographic reconstruction of asymmetric molecular orbitals based on high-order harmonic generation with a two-color multicycle laser field. It is shown that by adjusting the relative phase of the two fields, the returning electrons can be forced to recollide from one direction for all the orientations of molecules. Thus, the reconstruction of the asymmetric orbitals can be carried out with multicycle laser field. This releases the stringent requirement of a single-cycle pulse with a stabilized and controllable carrier-envelope phase for the tomographic imaging of asymmetric molecular orbitals.
Collapse
Affiliation(s)
- Meiyan Qin
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | |
Collapse
|
46
|
Wang X, Eberly JH. Nonadiabatic theory of strong-field atomic effects under elliptical polarization. J Chem Phys 2012; 137:22A542. [DOI: 10.1063/1.4752079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Zhou Y, Huang C, Lu P. Revealing the multi-electron effects in sequential double ionization using classical simulations. OPTICS EXPRESS 2012; 20:20201-20209. [PMID: 23037072 DOI: 10.1364/oe.20.020201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We theoretically investigated sequential double ionization (SDI) of Ar by the nearly circularly polarized laser pulses with a fully correlated classical ensemble model. The ion momentum distributions of our numerical results at various laser intensities and pulse durations agree well with the experimental results. The experimentally observed multi-electron effects embodied in the joint momentum spectrum of the two electrons is also reproduced by our correlated classical calculations. Interestingly, our calculations show that the angular distribution of the first photoelectron from the trajectories which eventually suffer SDI differs from the distribution of the photoelectrons from above-threshold ionization trajectories. This observation provides additional evidence of multi-electron effects in strong field SDI.
Collapse
Affiliation(s)
- Yueming Zhou
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | |
Collapse
|
48
|
Tang Q, Zhou Y, Huang C, Liao Q, Lu P. Correlated electron dynamics in nonsequential double ionization of molecules by mid-infrared fields. OPTICS EXPRESS 2012; 20:19580-19588. [PMID: 23038599 DOI: 10.1364/oe.20.019580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The electron dynamics in strong field nonsequential double ionization (NSDI) of nitrogen molecules by mid-infrared (MIR) laser pulses is investigated with the three-dimensional classical ensemble model. The numerical results show that in the MIR regime, the correlated behavior of the two electrons from NSDI is independent on the molecular alignment, contrary to the case in the near-infrared (NIR) regime where the electron correlations exhibit a strong alignment dependence. In consistent with the experimental results, our numerical results show that the longitudinal momentum spectrum of the doubly charged ion evolves from a wide single-hump structure at NIR regime into a double-hump structure when wavelength enters the MIR regime. This double-hump structure becomes more pronounced as the wavelength further increases. The responsible microscopic electron dynamics of NSDI at the MIR regime is explored by back analysis of the classical trajectories.
Collapse
Affiliation(s)
- Qingbin Tang
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | |
Collapse
|