1
|
Shen YP, Guo B, Liu WP. An indirect technique in nuclear astrophysics: alpha-cluster transfer reaction. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Helium(4He, or α)is the second most abundant element in the observable Universe. The α-particle induced reactions such as(α, γ), (α, n) and (α, p) play a crucial role in nuclear astrophysics, especially for understanding stellar heliumburning. Because of the strong Coulomb repulsion, it is greatly hindered to directly measure the cross sections for these α-capture reactions at stellar energies. Alpha-cluster transfer reaction is a powerful tool for investigation of astrophysical(α, γ), (α, n)and(α, p)reactions since it can preferentially populate the natural-parity states with an α-cluster structure which dominantly contribute to these astrophysical α-capture reactions during stellar heliumburning. In this paper, we reviewthe theoretical scheme, theexperimental technique, astrophysical applications and the future perspectives of such approach based on α-cluster transfer reactions.
Collapse
|
2
|
Shen YP, Guo B, deBoer RJ, Li ZH, Li YJ, Tang XD, Pang DY, Adhikari S, Basu C, Su J, Yan SQ, Fan QW, Liu JC, Chen C, Han ZY, Li XY, Lian G, Ma TL, Nan W, Nan WK, Wang YB, Zeng S, Zhang H, Liu WP. Constraining the External Capture to the ^{16}O Ground State and the E2 S Factor of the ^{12}C(α,γ)^{16}O Reaction. PHYSICAL REVIEW LETTERS 2020; 124:162701. [PMID: 32383943 DOI: 10.1103/physrevlett.124.162701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The ^{12}C(α,γ)^{16}O reaction is one of the most crucial reactions in nuclear astrophysics. The E2 external capture to the ^{16}O ground state (GS) has not been emphasized in previous analyses but may make a significant contribution to the ^{12}C(α,γ)^{16}O cross section depending on the value of the GS asymptotic normalization coefficient (ANC). In the present work, we determine this ANC to be 337±45 fm^{-1/2} through the ^{12}C(^{11}B,^{7}Li)^{16}O reaction using a high-precision magnetic spectrograph. This sheds light on the existing large discrepancy of more than 2 orders of magnitude between the previously reported ANC values. Based on the new ANC, we experimentally constrain the GS external capture and show that through interference with the high energy tail of the 2^{+} subthreshold state, a substantial enhancement in the GS S_{E2}(300) factor can be obtained (70±7 keV b) compared to that of a recent review (45 keV b), resulting in an increase of the total S factor from 140 to 162 keV b, which is now in good agreement with the value obtained by reproducing supernova nucleosynthesis calculations with the solar-system abundances. This work emphasizes that the external capture contribution for the ground state transition cannot be neglected in future analyses of the ^{12}C(α,γ)^{16}O reaction.
Collapse
Affiliation(s)
- Y P Shen
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - B Guo
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - R J deBoer
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Z H Li
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - Y J Li
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - X D Tang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - D Y Pang
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China
| | - S Adhikari
- Physics Department, Techno India University, Kolkata 700091, India
| | - C Basu
- Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata-700064, India
| | - J Su
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | - S Q Yan
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - Q W Fan
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - J C Liu
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - C Chen
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - Z Y Han
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - X Y Li
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - G Lian
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - T L Ma
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - W Nan
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - W K Nan
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - Y B Wang
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - S Zeng
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - H Zhang
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| | - W P Liu
- China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
| |
Collapse
|
3
|
Gales S, Tanaka KA, Balabanski DL, Negoita F, Stutman D, Tesileanu O, Ur CA, Ursescu D, Andrei I, Ataman S, Cernaianu MO, D'Alessi L, Dancus I, Diaconescu B, Djourelov N, Filipescu D, Ghenuche P, Ghita DG, Matei C, Seto K, Zeng M, Zamfir NV. The extreme light infrastructure-nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:094301. [PMID: 29952755 DOI: 10.1088/1361-6633/aacfe8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The European Strategy Forum on Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser fields with intensities reaching up to 1022-1023 W cm-2 called 'ELI' for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011-2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania. The Romanian pillar is ELI-Nuclear Physics (ELI-NP). The new facility is intended to serve a broad national, European and International science community. Its mission covers scientific research at the frontier of knowledge involving two domains. The first one is laser-driven experiments related to nuclear physics, strong-field quantum electrodynamics and associated vacuum effects. The second is based on a Compton backscattering high-brilliance and intense low-energy gamma beam (<20 MeV), a marriage of laser and accelerator technology which will allow us to investigate nuclear structure and reactions as well as nuclear astrophysics with unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with significant societal impact are being developed. The ELI-NP research centre will be located in Măgurele near Bucharest, Romania. The project is implemented by 'Horia Hulubei' National Institute for Physics and Nuclear Engineering (IFIN-HH). The project started in January 2013 and the new facility will be fully operational by the end of 2019. After a short introduction to multi-PW lasers and multi-MeV brilliant gamma beam scientific and technical description of the future ELI-NP facility as well as the present status of its implementation of ELI-NP, will be presented. The science and examples of societal applications at reach with these electromagnetic probes with much improved performances provided at this new facility will be discussed with a special focus on day-one experiments and associated novel instrumentation.
Collapse
Affiliation(s)
- S Gales
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), 'Horia Hulubei' National R&D Institute for Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Măgurele, jud. Ilfov, Romania. IPN Orsay, IN2P3-CNRS and University Paris-Sud, 91406 Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|